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SEIS MODEL WITH TREATMENT IN AN

EXPONENTIALLY GROWING POPULATION

STANISLAS OUARO AND DÉSIRÉ OUEDRAOGO‡

Abstract. An SEIS deadly disease is introduced in an exponentially growing

population. Without the treatment, three thresholds quantities R0, R1, R2

determine the dynamic of the epidemic and that of the population. With

the treatment, three other threshold quantities R0T , R1T , R2T govern the dy-

namic of the epidemic and that of the population. We define the treatment
effort and determine the critical treatment effort needed to prevent the disease

to invade the population.

1. Introduction

Chronic diseases are responsible of most of the deaths in developed coun-
tries while infectious diseases are the first cause of deaths in developing
countries. But, even in the developed countries, infectious diseases remain
a serious threat due to the emergence of new diseases, the reemergence of
old diseases and the immigrants coming from developing countries where
diseases like tuberculosis are endemic.

Mathematical modelling of the dynamics of transmissible diseases is very
useful, since it allows to understand and gives conditions to prevent and
eradicate them. Most of mathematical epidemic models are compartmen-
tal. The population is divided in several compartments. Each compartment
contains individuals with the same statue with respect to the disease. The
number of compartments depends of the disease studied and the question
in interest. Every model has at least the two following compartments. The
compartment I of the infectious individuals who are infected and able to
transmit the disease. The compartment S of the susceptible individuals who
are not infected but can be infected through a contact with an infectious
individual. Other compartments are the compartment E of the exposed or
latent individuals who are infected but not yet able to transmit the disease;
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the compartment R of those who have a permanent or non-permanent im-
munity, the compartment M of infants born with passive and temporary
immunity, transmitted by infected mothers; the compartment T of treated
individuals or individuals under treatment. In [11] Mena-Lorca and Heth-
cote, studied the dynamic of SIRS epidemics with varying population sizes
and found that the disease can play the role of regulator of the population.
In [3] Castillo-Chavez and Sung studied tuberculosis models with treatment.
Castillo and Feng studied in [4] a tuberculosis model with treatment in a
population with a constant recruitment rate. Ssematimba et al. studied a
tuberculosis model with treatment in [15]. In [8], Hui and Zhu studied the
dynamics of SEIS epidemic models with varying population size and vertical
transmission, assuming that all the offspring of the infected individuals are
exposed. Meng et al. studied in [12] the dynamic of an SEIS model with
treatment in a population with a constant recruitment rate. Zhang et al.
studied an SEIS epidemic model with a general saturation incidence in a
population with a constant recruitment rate [17]. In [10], A. Jabarri et al.
studied a two-strain TB model with multiple latent stages. Zhang et al.
studied a delayed SIV model with direct and environmental transmissions
in [18]. In [13] Meng et al. studied the dynamics of a stochastic SIS model
with double epidemic hypothesis. Yang et al. studied a diffusive within-host
dynamics in [16].

The basic reproduction number R0 is defined as the average number of
secondary case generated by the introduction of one infectious individual
in a fully susceptible population. For many epidemiological models, R0

is the threshold quantity. If R0 is less than one, then the disease cannot
invade the population. Otherwise, the disease will invade and persist in the
population. For epidemiology models with a disease free equilibrium, R0 is
the spectral radius of the next generation matrix [6, 5]. For models with
closed population, the dynamic of the epidemic in term of the numbers
of individuals and that in term of the proportions in the epidemiological
classes are identical. But for epidemics with varying population size, the
number of infected people could go to infinity even though the proportion
of the infected goes to zero if the population grow faster than the epidemic.
Furthermore, the proportions of the infected could remain positive, while
the number of infected vanishes, if the population is decaying to zero. Thus,
it is important when studying an epidemic in a population with varying size
to consider the proportions and also the sizes of the epidemiological classes.

In this paper, we study an SEIS epidemic in a population that is growing
exponentially without the disease. We consider a population with a birth
rate b, and a death rate µ, such that b > µ, that is the population is growing
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exponentially with rate b− µ. In this population, a mortal and non immu-
nizing infectious disease is introduced. With the introduction of the disease,
the population is divided in three classes: S, E and I. The class S contains
susceptible individuals that is, those who are not infected but who can be
infected through contact with an infectious. When there is an adequate
contact of a susceptible with an infectious so that transmission occurs, then
the susceptible enters the exposed class E of those in latent period, who
are infected but not yet infectious. If the conditions are favorable for the
development of the disease agent, the exposed individual become infectious,
entering the class I. When the infectious period end, the individual become
again susceptible, since the disease does not confer immunity. So, we have
an endemic SEIS model. We assume that there is no vertical transmission
that is all newborns are susceptible. This model fit with diseases like tuber-
culosis and gonorrhea. The disease induce an additional rate of death d in
the class I. The population is homogeneously mixing with average contact
rate c per unit time. The probability of the disease transmission during a
contact between a susceptible and an infectious is β. Thus, the incidence is
the standard form cβSI/N . With the treatment a fourth compartment T of
the individuals under treatment is introduced. We assume that during the
treatment, the treated person is not infectious. This assumption is justified
because during the treatment, the action of the medicine can reduce the ca-
pacity of the disease agent and more, during the treatment, the person may
be quarantined and then has no contact with the susceptible. The treatment
rates of the latent and the infectious are respectively r1 and r2. A treated
individual recover with the rate m, that is the average time of the treatment
is 1/m. The summary of the notations used in this paper is given in Table
1. Our treatment model is different from the treatment model studied by
Castillo and Feng in [4, section 5] by the fact that, they assumed that T is
the compartment of the individuals recovered by treatment. We consider
first the model without treatment. Three threshold parameters R0, R1, R2

determine the dynamic of the epidemic and the dynamic of the population.
Further, we consider the model with treatment that is governed by three
others threshold parameters R0T , R1T , R2T . We define the treatment effort
and determine the critical treatment effort as the minimal treatment effort
required to prevent the disease to invade the population.

The rest of the paper is structured as follow. In Section 2, we consider
the case where there is no treatment. Section 3 is dedicated to the study
of the case were there is a treatment for the infectious and for the latent
. In Section 4, we simulate some epidemics to illustrate the results of the
previous sections. We end the paper in Section 5 by a conclusion and some
perspectives.
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N The population size
S Susceptible
E Exposed people in the latent period
I Infectious
T People in treatment
s, e, i, τ proportions of the population in the classes S,E,I,T
β Probability of transmitting the disease in a contact
c Contact rate
b Birth rate
µ Natural death rate
d Disease induced death rate
k Transfer rate from E to I
r1 Treatment rate of the latent
r2 Treatment rate of the infectious
δ Natural recovering rate
m Recovering rate of the treated
R0 Basic reproduction number

Table 1. Summary of notations.

2. The model without treatment

In this section, we consider the SEIS model without treatment. The pop-
ulation is divided in three compartments S, E and I. The transfer diagram
of the model is given by Figure 1. We introduce first, the model then, we
consider the dynamic of the proportions and therefore study the asymptotic
behavior of the sizes of the compartments and the population size.
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Figure 1. The transfer diagram of the SEIS model with the
susceptible class S, the exposed class E and the infectious
class I.

2.1. The model. Without treatment, we have an SEIS model given by the
following system.

(1)



dS

dt
= bN + δI − cβS I

N
− µS

dE

dt
= cβS

I

N
− (k + µ)E

dI

dt
= kE − (δ + µ+ d)I

N(t) = S(t) + E(t) + I(t)

S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0.

From (1) we have : dN/dt = (b − µ)N − dI. Since i is the proportion of
the infectious (i = I/N), dN/dt = (b− µ− id)N . Then the population will
be increasing if i < (b− µ)/d, and decreasing if i > (b− µ)/d. Therefore if
(b−µ)/d > 1 (i.e b > µ+ d), then the population will always be increasing.
System (1) has a trivial solution that is (0, 0, 0). But this solution is not
interesting because it is not relevant to consider an empty population. Fur-
ther if we assume that E(0) = I(0) = 0, then E(t) = I(t) = 0 and

S(t) = N(t) = N(0)e(b−µ)t, for all t > 0. Thus, System (1) does not
admit a non trivial disease free equilibrium since we assume that b > µ.
Therefore, the next generation matrix (NGM) method (see [5, 6]) does not
fit to derive its basic reproduction number R0.
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Theorem 1. N(t) is positive and constant (N(t) = N(0) > 0,∀t ≥ 0) if
and only if the parameters satisfy

(2) kcβ[db+ δ(b− µ)]− (k + µ)(δ + µ+ d)[cβ(b− µ) + dµ] = 0,

and the initial values verify

(3)



S(0) = (kcβ)−1(k + µ)(δ + µ+ d)N0,

E(0) = (kd)−1(δ + µ+ d)(b− µ)N0,

I(0) = d−1(b− µ)N0,

with N0 > 0.

Proof. By using successively the derivatives of N, I and E; N is constant
if and only if I, E, S are constant with I = d−1(b − d)N , E = (kd)−1(δ +
µ+ d)(b− µ)N and S = (kcβ)−1(k+ µ)(δ+ µ+ d)N . By setting dS/dt = 0
and substituting S,E and I by their respective values in function of N ,
simplifying by N as it is assumed to be positive, and multiplying by kcβd,
one gets Eq. (2) �

Generally, (2) and (3) are not satisfied, therefore N(t) is not constant.
Thus in the following, we assume that N(t) is not constant.

2.2. Study of the proportions. We consider the proportions of individ-
uals in the three compartments, s = S/N , e = E/N and i = I/N . By
System (1) and the derivative of N , we get the following system.

(4)



ds

dt
= b− bs+ δi− (cβ − d)si

de

dt
= cβsi− (b+ k)e+ dei

di

dt
= ke− (b+ δ + d)i+ di2.

Remark 1. The natural death rate µ is absent in System (4). It has no
effect on the dynamic of the proportions since it is the same in all the three
compartments.
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As s+ e+ i = 1, by substituting s by 1− e− i in the derivative of e, one
gets

(5)


de
dt = −(b+ k)e+ cβi+ (d− cβ)ei− cβi2,

di
dt = ke− (b+ δ + d)i+ di2.

The suitable set is

(6) D = {(e, i)/e ≥ 0, i ≥ 0, e+ i ≤ 1} .

Theorem 2. The domain D is positively invariant for System (5).

Proof. If i(t) = 0 for a given time t ≥ 0, then
di

dt
(t) = ke(t) ≥ 0.

If e(t) = 0 for a given time t ≥ 0, then
de

dt
(t) = cβs(t)i(t) ≥ 0.

If e(t) + i(t) = 1 for a given time t ≥ 0, then
d(e+ i)

dt
(t) = −b− δi(t) < 0.

Thus no solution path starting in D, leaves D. �

The dynamic of System (5) is determined by the threshold quantity R1

given by

(7) R1 =
kcβ

(b+ k)(b+ δ + d)
.

It is obvious that (0, 0) is the unique disease free equilibrium (DFE) of
System (5).

Theorem 3. The disease free equilibrium (0, 0) of System (5), is globally
asymptotically stable (GAS) in D if R1 ≤ 1 and unstable if R1 > 1.

Proof of Theorem 3 (See Appendix A).

Theorem 4. If R1 > 1, then System (5) has a unique endemic equilibrium
that is globally asymptotically stable in D − {(0, 0)}.

Proof of Theorem 4 (see Appendix B).
The dynamic of the proportions model is fully determined by the thresh-

old quantity R1. If R1 is less or equal one, then the disease free equilibrium
is globally asymptotically stable in the feasible region D. If R1 > 1, then
the disease free equilibrium is unstable and System (5) admits an a unique
endemic equilibrium that is globally asymptotically stable in D − {(0, 0)}.
Biologically, this means that if R1 is less or equal one, the disease cannot
invade the population in term of proportions. But, if R1 is greater than one,
then the disease will remain endemic in the population. Due to the varia-
tion of the population size, the knowledge of the dynamic of the proportions
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is not enough. Because the proportion of the infected may vanishes while
the number of the infected goes to ∞, if the population size goes to ∞. In
the other hand, the proportion of the infected individuals may remain pos-
itive with their number vanishing if the population vanishes. Thus in the
following, we study the asymptotic behavior of N(t), E(t), I(t) and S(t).

2.3. The asymptotic behavior of N(t), E(t), I(t), S(t). Now, we study
the asymptotic behavior of the population size and that of the compart-
ments. These behaviors are determined by the threshold parameters R0

and R2 given by

R0 =
kcβ

(k + µ)(µ+ δ + d)
and R2 =

b

µ+ di∗
if R1 > 1.

where i∗ is the asymptotic proportion of the infectious individuals.

Remark 2. R0 is the product of the contact rate c, the probability of trans-
mitting the disease during a contact between a susceptible and an infectious
β, the average infectious period 1/(µ+ δ+ d), the probability for an exposed
individual to become infectious k/(k + µ). Thus R0 is basic reproduction
number, that is the average number of secondary infections due to an in-
fected individual during the infectious period, in a susceptible population.

Theorem 5. Let (S(t), E(t), I(t)) be a solution of System (1) with N(0) >
0.

(1) If R0 < 1, then (S(t), E(t), I(t)) −→ (∞, 0, 0),
(2) if R0 = 1, then (S(t), E(t), I(t)) −→ (∞, E∗, I∗),
(3) if R1 ≤ 1 < R0, then (S(t), E(t), I(t)) −→ (∞,∞,∞),
(4) if R1 > 1 and R2 > 1 then (S(t), E(t), I(t)) −→ (∞,∞,∞),
(5) if R1 > 1 and R2 = 1 then (S(t), E(t), I(t)) −→ (S∗, E∗, I∗),
(6) if R1 > 1 and R2 < 1 then (S(t), E(t), I(t)) −→ (0, 0, 0).

Proof of Theorem 5. See appendix C.

Remark 3. If R1 > 1, then R2 is the asymptotic reproduction number of
the population and α := b−µ−di∗ is its asymptotic exponential growth rate.
An alternative way is to set R2 = (b− µ)/di∗ as in [3] or R2 = (b− di∗)/µ.
The result will be the same, but R2 will not get a biological interpretation.

We have

R0 =
kcβ

(µ+ k)(µ+ δ + d)
and R1 =

kcβ

(b+ k)(b+ δ + d)
.

Thus R1 < R0, since we assume that b > µ. Therefore to prevent the
invasion of the population by the disease one should focus on the basic
reproduction number R0.
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In this section we have studied the dynamic of an SEIS epidemic intro-
duced in a population with an exponentially growing size. The dynamic
of the epidemic and that of the population is governed by three threshold
quantities R0, R1 and R2. If R0 < 1, then the disease cannot invade the
population. When R0 = 1, the number of latent individuals and that of
infectious individuals go to positive numbers, while the population keep on
growing exponentially. If R1 ≤ 1 < R0, then the number of infected individ-
uals grow exponentially, but with a lower rate than the population growth
rate, so that the proportion of infected individuals vanishes. When R1 > 1,
then the proportions go to an endemic equilibrium, and the dynamic of the
population is determined by R2. If R2 < 1, then the population size goes
to zero. If R2 = 1, then the population stabilizes and if R2 > 1, then the
population grows exponentially but with a lower rate than its initial growth
rate. The summary of the results of this section is given in Table 2.

R1 R2 R0 (N,S,E, I)→ (s, e, i)→
≤ 1 > 1 < 1 (∞,∞, 0, 0) 1, 0, 0
≤ 1 > 1 = 1 (∞,∞, E∗, I∗) 1, 0, 0
≤ 1 > 1 > 1 (∞,∞,∞,∞) 1, 0, 0
> 1 < 1 > 1 (0, 0, 0, 0) (s∗, e∗, i∗)
> 1 = 1 > 1 (N∗, S∗, E∗, I∗) (s∗, e∗, i∗)
> 1 > 1 > 1 (∞,∞,∞,∞) (s∗, e∗, i∗)

Table 2. Summary of results for the SEIS model

3. The model with treatment

Now we assume that there is a treatment for the latent and the infectious
individuals. Hence we have a fourth compartment T of those in treatment.
As for the preceding model, we present first the model, then we study the
dynamic of the proportions and finish by studying the asymptotic behavior
of the numbers.

3.1. The model. As in [3, 15] we consider an SEIS model with treatment
for the latent and for the infectious individuals. But instead of considering
T as the compartment of treated and healed individuals, we assume that it
is the compartment of those in treatment. We assume that an individual
in treatment is no more infectious and has not a disease related death rate.
Since the recovery from the disease does not confer immunity, we assume
that at the end of the treatment, the treated individual becomes susceptible,
unless he dies during this period from other causes. We neglect death due to
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the disease, for the treated individuals, and also transmission of the disease
to susceptible by treated individuals. In the following, we shall refer to this
model as the SEITS model. The transfer diagram of the SEITS model is
given by Figure 2. With the treatment and the hypothesis above, the model

Figure 2. The transfer diagram of the SEITS model with
the susceptible class S, the exposed class E, the infectious
class I, and the treatment class T.
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is given by the following system.

(8)



dS

dt
= bN +mT + δI − cβS I

N
− µS,

dE

dt
= cβS

I

N
− (k + r1 + µ)E,

dI

dt
= kE − (r2 + δ + µ+ d)I,

dT

dt
= r1E + r2I − (m+ µ)T = 0,

N = S + E + I + T,

S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, T (0) ≥ 0.

By summing the four derivatives in (8), one gets

(9)
dN

dt
= (b− µ)N − dI

Remark 4. By setting r1 = δ = 0 and T = R, we get a model that is
equivalent to an SEIRS model. Thus the SEITS model, studied here is more
general than the SEIRS model.

Theorem 6. N(t) is positive and constant (N(t) = N(0) > 0,∀t ≥ 0) if
and only if the parameters satisfy the following equality :

(m+ µ)kcβ[db+ δ(b− µ)] +mcβ[r1(r2 + δ + µ+ d) + r2k](b− µ)

−(m+ µ)(k + r1 + µ)(r2 + δ + µ+ d)[cβ(b− µ) + µd] = 0

(10)

and the initial values satisfy

(11)



S(0) = (kcβ)−1(k + r1 + µ)(r2 + δ + µ+ d)N0,

E(0) = (kd)−1(r2 + δ + µ+ d)(b− µ)N0,

I(0) = d−1(b− µ)N0,

T (0) = (kd(m+ µ))−1[r1(r2 + δ + µ+ d) + r2k](b− µ)N0,

with N0 > 0.
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Proof. The proof of this theorem is similar to that of Theorem 1 mutatis
mutandis. �

Remark 5. If we set r1 = r2 = m = 0 in Eq. (10), then we retrieve Eq.
(2)

3.2. Study of the proportions. Let’s consider the proportions in the
epidemiological classes, s = S/N, e = E/N, i = I/N, τ = T/N . By System
8 and Eq. 9, we get the following system.

(12)



ds
dt = b+mτ + δi− bs− (cβ − d)si,

de
dt = cβsi− (b+ k + r1)e+ dei,

di
dt = ke− (b+ δ + r2 + d)i+ di2,

dτ
dt = r1e+ r2i− (b+m)τ + dτi.

As s(t) + e(t) + i(t) + τ(t) = 1, by substituting τ by 1 − s − e − i in the
derivative of s, we get

(13)



ds
dt = b+m+ (δ −m) i−me− (b+m)s− (cβ − d)si,

de
dt = cβsi− (b+ k + r1)e+ dei,

di
dt = ke− (b+ δ + r2 + d)i+ di2.

The suitable set is

DT = {(s, e, i)/s ≥ 0, e ≥ 0, i ≥ 0, s+ e+ i ≤ 1} .

Theorem 7. The domain DT is positively invariant for the System (13).

Proof. The proof of Theorem 7 is similar to that of Theorem 2 �

If e = i = 0 then, de/dt = di/dt = 0 and ds/dt = (b+m)(1−s). Therefore
(1, 0, 0) is the unique disease free equilibrium (DFE) of System (13).

The dynamic of System (13) is determined by the threshold quantity R1T

given by

(14) R1T =
kcβ

(b+ k + r1)(b+ δ + r2 + d)
.

Theorem 8. The disease free equilibrium of System (13) is globally asymp-
totically stable in DT when R1T ≤ 1 and unstable if R1T > 1.

Proof of Theorem 8 (See Appendix D).
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The threshold parameter R1T can be written as follow

R1T =
kcβ

(b+ r1 + k)(b+ r2 + δ + d)

=
b+ k

b+ r1 + k
× b+ δ + d

b+ r2 + δ + d
× kcβ

(b+ k)(b+ δ + d)

= (1− τ b1)(1− τ b2)R1,

with τ b1 = r1/(b+ r1 + k) and τ b2 = r2/(b+ r2 + δ+ d). by substituting b by
µ in the expressions of τ b1 and τ b2 , one gets respectively the treated fraction
among the latent individuals and the treated fraction among the infectious
individuals. We define the pseudo treatment effort γb by

(15) γb = 1−
√

(1− τ b1)(1− τ b2).

To prevent the disease to invade the population in term of the proportions,
the pseudo treatment effort γb must be greater than the quantity 1−

√
1/R1.

When R1T > 1 the disease free equilibrium is unstable. We did not
show but the simulations results show that in this case there is an endemic
equilibrium that is globally asymptotically stable (Figure 9). Therefore, we
make the following conjecture.

Conjecture 1. If R1T > 1, then System (13) has one and only one endemic
equilibrium, that is globally asymptotically stable in the interior of DT .

In this subsection we have studied the model with proportions of the
SEITS model. Its dynamic is determined by the threshold quantity R1T ,
given by Eq. (14). Then the disease free equilibrium is globally asymp-
totically stable in the feasible region, if R1 ≤ 1 and unstable if R1T > 1.
Biologically this means that the disease cannot invade the population in
term of the proportions if R1T ≤ 1. While it will persist in the population
if R1T > 1.

3.3. Asymptotic behavior of N(t), S(t), E(t), I(t) and T (t). Now, we
study the asymptotic behavior of the population size N(t), and that of the
compartments. That behaviors are determined by the threshold parameters
R0T and R2T given by

R0T =
kcβ

(k + r1 + µ)(µ+ r2 + δ + d)
and R2T =

b

µ+ di∗T
,

where i∗T is the asymptotic positive infectious proportion when it exists.

Remark 6. R0T is the product of the contact rate c, the probability of trans-
mitting the disease during a contact between a susceptible and an infectious
β, the average infectious period 1/(µ + r2 + δ + d), and the probability for
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R1T R0T N,S,E, I, T → s, e, i, τ →
≤ 1 < 1 ∞,∞, 0, 0, 0 1, 0, 0, 0
≤ 1 = 1 ∞,∞, E∗, I∗, T ∗ 1, 0, 0, 0
≤ 1 > 1 ∞,∞,∞,∞,∞ 1, 0, 0, 0

Table 3. Summary of the results for the SEIS model with
treatment when R1T ≤ 1.

an exposed individual to become infectious k/(k + r1 + µ). Thus, R0T is
the average number of secondary infections due to an infectious during the
infectious period, in a susceptible population.

Theorem 9. Let (S(t), E(t), I(t), T (t)) be a solution of System (8).

(1) If R0T < 1 , then (S(t), E(t), I(t), T (t)) −→ (∞, 0, 0, 0),
(2) if R0T = 1 , then (S(t), E(t), I(t), T (t)) −→ (∞, E∗, I∗, T ∗),
(3) if R1T ≤ 1 < R0T , then S(t), (E(t), I(t), T (t)) −→ (∞,∞,∞,∞).

The threshold parameter R0T can be written as follow

R0T =
kcβ

(µ+ k + r1)(µ+ δ + r2 + d)
,

=
(µ+ k)

(µ+ k + r1)
× (µ+ δ + d)

(µ+ δ + r2 + d)
× kcβ

(µ+ k)(µ+ δ + d)
,

= (1− τe)(1− τi)R0,

where τe and τi are respectively the proportion of the treated individuals
among the latent and the proportion of the treated individuals among the
infectious. We define the treatment effort by γ = 1 −

√
(1− τe)(1− τi).

R0T < 1 ⇐⇒
√

(1− τe)(1− τi) <
√

1/R0, then to prevent the disease
to invade the population, the geometric mean of the proportions of the
untreated among the latent and the infectious individuals must be less than√

1/R0, equivalently, the treatment effort γ must be greater than 1−
√

1/R0.
Let’s set γc the critical treatment effort, the minimal treatment effort needed
to prevent the invasion of the population by the disease. We have

γc =

{
0, if R0 ≤ 1,

1−
√

1/R0, if R0 > 1.

Theorem 10. let’s assume that System (13) has a unique endemic equi-

librium (s∗T , e
∗
T , i
∗
T ), that is globally asymptotically stable in

o
DT and, set

R2T = b/(µ− di∗T ).

(1) if R2T > 1 , then (S,E, I, T ) −→ (∞,∞,∞,∞),
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(2) if R2T = 1 , then (S,E, I, T ) −→ (S∗, E∗, I∗, T ∗),
(3) if R2T < 1 , then (S,E, I, T ) −→ (0, 0, 0, 0).

Proof. Let’s assume that System (13) has an endemic equilibrium (s∗T , e
∗
T , i
∗
T )

that is globally asymptotically stable in
o
DT . Then,

dN

dt
−→ (b− µ− di∗T )N when t −→∞.

Set α2T = b − µ − di∗T and R2T = b/(µ − di∗T ). Thus, the asymptotic
exponential growth rate of the population size N(t) is αT , its asymptotic
reproduction number is R2T and we have the sign relation sign(αT ) =
sign(R2T − 1). Thus, the result follows. �

In this section, we have studied the dynamic of an SEIS disease intro-
duced in a population that was initially growing exponentially, assuming
that there is a treatment for latent individuals and infectious individuals.
As for the model without treatment, the dynamic of the SEIST model is
determined by three threshold quantities, R0T , R1T and R2T . We have de-
fined the treatment effort γ and the critical treatment effort γc. To prevent
the disease to invade the population the treatment effort, must be larger
than the quantity 1−

√
1/R0.

4. Simulations

In this section, we illustrate the dynamics of the previous systems by
numerical simulations. We set µ = 1, that is the time unit is the life
expectancy. We choose arbitrary the other parameters values to cover the
different scenarios given by the theoretical results.

4.1. Simulations of the model without treatment. We simulate first
the model without treatment to validate the results of Section 2.
Figure 3 shows phase portraits for system (5). When R1 = 0.5 or R1 = 1,
the disease free equilibrium (0, 0) is globally asymptotically stable in the
feasible region D. For R1 = 2, the disease free equilibrium is unstable and
there is an endemic equilibrium that is globally asymptotically stable in
D − {(0, 0)}. These simulations confirm Theorems 3 and 4.

In Figure 4, the proportions go to an endemic equilibrium, while the sizes
of all the compartments grow exponentially, but with a lower rate than the
initial growth rate of the population.

In Figure 5, the proportions go to an endemic equilibrium and the sizes
also go to an endemic equilibrium. The disease has stopped the growth of
the population. The parameters verify Equality (2).
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(a) R1 = 0.5 (b) R1 = 1

(c) R1 = 2

Figure 3. Phase plane portraits for the system (5) with
different values of R1. For all cases b = 4, k = 2, δ = 4, d = 2;
for (a) cβ = 15, for (b) cβ = 30 and cβ = 60 for (c), that
gives respectively R1 = 0.5, R1 = 1 and R1 = 2.

In Figure 6, we have the worst case scenario. The disease turned the
exponential growth of the population to an exponential decay. The popu-
lation vanishes and the disease with. But the proportions go to an endemic
equilibrium.

We have simulated different scenarios of the SEIS model without treat-
ment. The findings confirm the results that we have in Section 2.

4.2. Simulations for the model with treatment. Now we simulate
some SEITS epidemics using different values of the parameters to cover
the different cases that we have in Section 3. We start by simulating a
situation where the conditions in Theorem 8 hold. We have solution with
constant population size in Figure 7. In Figure 8 we have the solutions
paths of System (12) with different initial values. This simulations confirm
that if R1T ≤ 1 then the disease free equilibrium is globally asymptotically
stable in DT , confirming Theorem 8.

In Figure 9, we have two cases where R1T is greater than 1, in each case
all the solutions approach the same endemic equilibrium. Showing that the
disease free equilibrium is unstable and that there is an endemic equilibrium
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(a) Numbers

(b) proportions

Figure 4. SEIS curves with b = 1.3, µ = 1, cβ = 10, k =
5, d = 1.3, δ = 3 that gives R1 = 1.417, R0 = 1.572, i∗ =
0.1660424, αT = 0.084, R2 = 1.069, where the initial val-
ues are (S(0), E(0), I(0)) = (970, 20, 10). The proportions
approach an endemic equilibrium, while the sizes grow ex-
ponentially.
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(a) Numbers

(b) proportions

Figure 5. SEIS curves with b = 1.3, µ = 1, cβ = 10, k =
4.609756, d = 1.9, δ = 2.5 that gives R1 = 1.368, R0 =
1.522, i∗ = 0.158, αT = 0, R2 = 1, where the initial values
are (S(0), E(0), I(0)) = (980, 10, 10). The sizes of all the
compartments stabilize.
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(a) Numbers

(b) proportions

Figure 6. SEIS curves with b = 1.3, µ = 1, cβ = 10, k =
5, d = 2, δ = 1 that gives R1 = 1.846, R0 = 2.083, i∗ =
0.346, αT = −0.391, R2 = 0.769, where the initial values are
(S(0), E(0), I(0)) = (980, 10, 10). The fractions approach an
endemic equilibrium, while the population vanishes.



SEIS model with treatment in an exponentially ... 69

Figure 7. SEIST curves with b = 3, µ = 1, cβ = 154, k =
10, d = 10, δ = 3, r1 = 3, r2 = 6,m = 10, the parameters
and the initial values are chosen such that the equalities in
Theorem 6 are verified.

that is globally asymptotically stable in the interior of the feasible region.
The endemic equilibrium in (a) is different to that in (b), hence the endemic
equilibrium depends on the parameters values. This simulations confirms
conjecture 1.

In Figure 10, we have R0T < 1. Then, the number of the infected in-
dividuals goes to zero and the population keep on growing exponentially.

In Figure 11, we have R1T < 1 and R0T = 1, the population keep on
growing exponentially while the numbers of the latent, of the infectious and
of the treated go to positive values. In term of the proportions, the epidemic
dies out. But in term of the numbers, the disease is endemic, although rare
in population.

In Figure 12, we have the situation where R2T > 1. All the compartments
grow exponentially but with a lower rate than the initial growth rate of the
population. The epidemic has slowed the growth of the population.

For Figure 13, the parameters are chosen such that Eq. (10) is verified.
The epidemic has stopped the growth of the population. In this case, we
get R2T = 1.
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In Figure 14, we have the worst situation. In spite of the treatment, the
disease induced death rate turned the population exponential growth to an
exponential decay.

The simulations of the SEITS model, studied in Section 3 confirm the
theoretical results. If the parameters and the initial values verify the hy-
potheses of Theorem 6, then S(t), E(t), I(t), T (t) are constant (Figure 7).
For the proportions, if R1T ≤ 1, then the disease free equilibrium is globally
asymptotically stable (Figure 8); if R1T > 1, then the disease free equi-
librium is unstable and there is an endemic equilibrium that is globally
asymptotically stable in the interior of the feasible region (Figure 9). If
R0T < 1, then the number of the infected individuals go to zero (Figure
10). If R0T = 1 , the number of the infected individuals goes to a positive
and finite number, while the population size goes to infinity (Figure 11). If
R1T ≤ 1 < R0T , then the infected compartments grow exponentially, but
with a lower rate than that of the population (Figure 12). If R1T > 1, then
at the beginning of the epidemic, the number of the infected grows exponen-
tially with a rate that is greater than the population growth rate. In this
case, the asymptotic behavior of the population depends on the threshold
quantity R2T . If R2T > 1, then all the compartments grow asymptotically
exponentially with a lower rate than the initial growth rate of the popula-
tion (Figure 12). If R2T = 1, then the population stabilizes (Figure 13). If
R2T < 1, then the population vanishes (Figure 14).

5. Conclusion

We have studied the dynamic of an infectious disease with latent pe-
riod which does not confer immunity at recovery, in a population that ini-
tially grows exponentially. We considered first the model without treat-
ment. Thus, we studied the model with treatment for the exposed and for
the infectious. Therefore we validated the theoretical results by numerical
simulations.

For the model without treatment, three thresholds quantities R0, R1, R2

govern the asymptotic behavior of the disease and that of the population.
If R0 < 1 then the disease cannot invade the population ((E, I) −→ (0, 0))
and the population keep on growing exponentially. If R1 ≤ 1 < R0, then
the number of the infected grow exponentially but with a lower rate than
that of the population, hence the proportion of the infected vanishes. If
R1 > 1, then the number of the infected grow initially quickly than the
population, and three scenarios are possible. i) The population keep on
growing exponentially and the epidemic with, but with a lower rate; ii)
The population stabilizes; iii) the population vanishes. Therefore, when
studying the dynamic of an infectious disease in a population with varying
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population size, it is not enough to control the proportion of the infected
individuals in the population. It is important to study also the dynamic of
the number of the infected individuals.

For the model with treatment, its dynamic is similar to that of the model
without treatment with the thresholds quantities R0T , R1T and R2T . The
treatment can prevent the disease to invade the population if its effort is
large enough. In order to perform this, the treatment effort must be greater
than 1−

√
1/R0. Unless, the number of individuals in treatment can grow

exponentially with the population. That is not realistic because the capac-
ity of the hospitals, and the availability of the drugs are often limited. The
treatment effort is a symmetric function of the proportions treated among
the latent and among the infectious. Thus, treating the infectious or the
exposed will have the same effect. But it depends on the respective num-
bers of exposed individuals and infectious individuals. For tuberculosis for
instance, it is known that one third of the world population is contaminated
but few (5− 10%) of the infected will become infectious (see [7]). Thus, to
have the same proportion of the infectious and the latent, the corresponding
number of the latent will be at least ten times the number of the infectious.
Hence, the treatment effort should be focused on the infectious.

For both models, we found that the epidemic can slow down, stop or turn
the exponential growth of the population to an exponential decay. That is
the disease can play the role of regulator of the population. The size of
the susceptible compartment has the same asymptotic behavior than that
of the population size in all the cases. That is understandable since in the
model, all the new born are susceptible.

One perspective is to show the existence, the uniqueness and the global
stability of an endemic equilibrium, when R1T > 1. Another one is to con-
sider multiple latent stages (see [10]), since it is known that for tuberculosis,
the risk to become infectious is not the same for a the latent individuals.
In fact the majority of the infectious, develops TB disease that is become
infectious, within the first five years after initial infection (see [7]).

Appendix A. Proof of Theorem 3

Proof. Let f(e, i) be the RHS of System (5). The Jacobian of f at the
disease free equilibrium is

Df(0, 0) =

(
−(b+ k) cβ

k −(b+ δ + d)

)
.

The characteristic polynomial of the Jacobian above is

P (x) = x2 + (2b+ k + δ + d)x+ (b+ k)(b+ δ + d)− kcβ.
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By the Routh-Hurwitz criterion (see [14, page 11]), all the roots of P (x)
have negative real parts if and only if (b + k)(b + δ + d) − kcβ > 0. Note
that (b + k)(b + δ + d) − kcβ > 0 if and only if R1 < 1. Thus by the
Poincaré-Lyapunov theorem of linearization, the disease free equilibrium
(0, 0) is locally asymptotically stable (LAS) if R1 < 1 and unstable when
R1 > 1. For the global stability, let us consider the function L defined on
D by L(e, i) = ke+ (b+ k)i.
.
L (e, i) = k[cβ(1− e− i)i− (b+ k − di)e] + (b+ k)[ke− (b+ δ + d− di)i]

= i[kcβ − (b+ k)(b+ δ + d) + (kd− kcβ)e+ ((b+ k)d− kcβ)i]

= iH(e, i)

with H(e, i) = kcβ − (b+ k)(b+ δ + d) + k(d− cβ)e+ ((b+ k)d− kcβ)i.
As H is affine, its maximum in the closed set D is achieved in the extremal
points of the boundary of D. The values of H at these points are H(0, 1) =
−(b+ k)(b+ δ),
H(1, 0) = −[(b + k)(b + δ) + bd] and H(0, 0) = (b + k)(b + δ + d)(R1 − 1).

Then, max(H) ≤ 0 if R1 ≤ 1. Thus,
.
L≤ 0 when R1 ≤ 1. Therefore, L is

a Lyapunov function for System (5). The set where
.
V= 0 is the face of D

with i = 0, but if i = 0 then di/dt = ke, so that i leaves this face unless
e = 0. Thus {(0, 0)} is the only positively invariant subset of the set with
.
L= 0. It follows from the Lasalle Invariance Principle (see [9, p. 200]) that,
all paths in D approach the origin. Then the disease free equilibrium is
globally asymptotically stable in D when R1 ≤ 1. �

Appendix B. Proof of Theorem 4

Proof. If R1 ≤ 1, the disease free equilibrium is globally asymptotically
stable in D, that precludes the existence of an endemic equilibrium. let’s
assume that R1 > 1. At an equilibrium, we have

−(b+ k)e+ cβi+ (d− cβ)ei− cβi2 = 0,(16)

−(b+ δ + d)i+ ke+ di2 = 0.(17)

The Eq. (16) is equivalent to ke = (b + δ + d− di)i. Multiplying Eq. (17)
by k, substituting ke by (b+ δ+d−di)i, simplifying by i (as we are looking
for an endemic equilibrium), developing and reducing, one gets

kcβ − (b+ k)(b+ δ + d)− [(cβ − d)(b+ k + δ + d)− bd]i+ d(cβ − d)i2 = 0.

Then, (s∗, e∗, i∗) is an endemic equilibrium of (4) if and only if i∗ is a root
in (0, 1) of the polynomial

p(x) = kcβ− (b+k)(b+ δ+d)− [(cβ−d)(b+k+ δ+d)− bd]x+d(cβ−d)x2
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and e∗ = k−1(b+ δ + d− di∗)i∗; s∗ = (kcβ)−1(b+ k − di∗)(b+ δ + d− di∗).
As p(x) is a second degree polynomial, then p(x) has one and only one root
in (0, 1) if and only if p(0)p(1) < 0.
We have

p(0) =kcβ − (b+ k)(b+ δ + d) = (b+ k)(b+ δ + d)(R0 − 1) > 0 as R1 > 1;

p(1) =− (b+ k + cβ − d)(b+ δ).

Thus p(0)p(1) < 0 if and only if b+ k + cβ − d > 0. But

R1 > 1⇔ kcβ > (b+ k)(k + δ + d)

⇔ kcβ > k(b+ k + δ + d) + b(δ + d)

⇒ kcβ > k(b+ k + δ + d)

⇒ cβ > b+ k + δ + d

⇒ cβ > d

⇒ b+ k + cβ − d > 0

Then if R1 > 1, p(x) has one and only one root in (0, 1). let i∗ be this root
and set
e∗ = k−1(b+ δ + d− di∗)i∗ , s∗ = (kcβ)−1(b+ k− di∗)(b+ δ + d− di∗). We
have s∗+ e∗+ i∗ = 1 and e∗ > 0 . To show that s∗ > 0, note first that s∗ >
0⇔ b+ k − di∗ > 0. We have p( b+kd ) = −cβ(δk + δb+ db) < 0. This imply

that b+k
d > i∗. Then, (5) has a unique endemic equilibrium. By Theorem 3,

the disease free equilibrium is unstable in D as R1 > 1. Busenberg and van
den Driessche have shown that System (5) has no periodic solution [1, 2].
Thus by the Poincaré- Bendixson Theorem, the unique endemic equilibrium
is globally asymptotically stable in D − {(0, 0)}. �

Appendix C. Proof of Theorem 5

Proof.

Lemma 1. If R1 ≤ 1, then

E

I
−→ δ + d− k +

√
∆

2k
, when t −→∞, with ∆ = (δ + d− k)2 + 4kcβ.

Proof. (
E

I

)′
=
E′I − I ′E

I2
= cβs+ (δ + d− k)

E

I
− k
(
E

I

)2

.
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Then, if R1 ≤ 1,(
E

I

)′
−→ cβ + (δ + d− k)

E

I
− k
(
E

I

)2

, when t −→∞.

(18) y′ = cβ + (δ + d− k)y − ky2

is a Riccati’s equation. Its solution is

y : t 7−→
(
Ce
√

∆t − k√
∆

)−1

+
δ + d− k +

√
∆

2k
, with C > 0 and ∆ = (δ+d−k)2+4kcβ.

Then,

E

I
−→ δ + d− k +

√
∆

2k
, when t −→∞.

�

We have R1 = kcβ/(b+ k)(b+ δ + d) and R0 = kcβ/(µ+ k)(µ+ δ + d),
with b > µ. Thus R1 < R0.

Let’s assume first that R1 ≤ 1. Then, the disease free equilibrium of
the model with proportions, is globally asymptotically stable in its feasible
region, that is (s, e, i) −→ (1, 0, 0). dN/dt −→ (b − µ)N , thus N −→ ∞,
since b > µ. Therefore S −→∞, since s −→ 1.

dI

dt
= kE − (µ+ δ + d)I =

[
k
E

I
− (µ+ δ + d)

]
I.

As R1 ≤ 1, by Lemma 1,

E

I
−→ δ + d− k +

√
∆

2k
, when t −→∞, with ∆ = (δ + d− k)2 + 4kcβ.

Therefore,

dI

dt
−→

[
δ + d− k +

√
∆

2
− (µ+ δ + d)

]
I = αI,

with α = (
√

∆− k − δ − d− 2µ)/2.

As S/N −→ 1 , E/I −→ (δ + d − k +
√

∆)/2k, by using the derivative of
E, we get dE/dt −→ αE. Thus, α is the common asymptotic exponential
growth rate of the infected compartments E and I when R1 is less than one.
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We have

α ≥ 0⇐⇒ δ + d− k +
√

∆ ≥ 2(µ+ δ + d)

⇐⇒
√

∆ ≥ 2µ+ δ + d+ k

⇐⇒ ∆ ≥ (2µ+ δ + d+ k)2

⇐⇒ 4kcβ ≥ (2µ+ δ + d+ k)2 − (δ + d− k)2

⇐⇒ kcβ ≥ (k + µ)(µ+ δ + d)

⇐⇒ R0 ≥ 1.

Thus it follows the sign relation sign(R0 − 1) = sign(α).
Therefore, (E, I) −→ (0, 0) when R0 < 1, (E, I) −→ (E∗, I∗) when R0 = 1
and
(E, I) −→ (∞,∞) when R1 ≤ 1 < R0.

Let’s assume now that R1 > 1. Then, the system with proportions ad-
mits a unique endemic equilibrium (s∗, e∗, i∗) that is globally asymptotically
stable. Therefore, all the compartments have the same asymptotic behavior
than that of the population size N . We have
dN/dt = (b − µ − di)N . Then, dN/dt → (µ + di∗)(R2 − 1)N . Therefore,
N(t) → 0 if R2 < 1 , N(t) → N∗ > 0 if R2 = 1 and N(t) → ∞ when
R2 > 1. �

Appendix D. Proof of Theorem 8

Proof. Let g(e, s, i) be Rhs of System (13). The Jacobian of g at the disease
free equilibrium is

Dg(1, 0, 0) =


−m− b −m −m+ δ − cβ + d

0 −(b+ k + r1) cβ

0 k −(b+ δ + r2 + d)

 .

The characteristic polynomial of Dg(1, 0, 0) is

U(x) = (−m−b−x)
[
x2 + (2b+ k + r1 + r2 + δ + d)x+ (b+ k + r1)(b+ δ + r2 + d)− kcβ

]
.

It is obvious that −(m+b) is a negative root of U(x). By the Routh-Hurwitz
criterion [14, page 11], all the roots of U(x) have negative real parts if and
only if (b+ k + r1)(b+ δ + r2 + d)− kcβ > 0. Note that

(b+ k + r1)(b+ δ + r2 + d)− kcβ > 0⇐⇒ R1T < 1.

Thus, by the Poincaré-Lyapunov linearization Theorem, the disease free
equilibrium (1, 0, 0) is locally asymptotically stable (LAS) if R1T < 1 and
unstable when R1T > 1. To show that the disease free equilibrium is globally
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asymptotically stable in DT when R1T ≤ 1, let’s consider the function V
defined by V (s, e, i) = ke+ (b+ k + r1)i.

.
V (s, e, i) = k

de

dt
+ (b+ k + r1)

di

dt
= k[cβsi− (b+ k + r1 − di) e] + (b+ k + r1)[ke− (b+ δ + r2 + d− di) i]
= i[kcβs− (b+ k + r1)(b+ δ + r2 + d) + kde+ (b+ k + r1)di]

= iW (s, e, i),

with W (s, e, i) = kcβs− (b+ k + r1)(b+ δ + r2 + d) + kde+ (b+ k + r1)di.
The affinity of W implies that it achieves its maximum in the extremal
points of the boundary of DT , and, we have

W (0, 0, 0) = −(b+ k + r1)(b+ δ + r2 + d),

W (1, 0, 0) = (b+ k + r1)(b+ δ + r2 + d)(R1T − 1),

W (0, 1, 0) = −[(b+ k + r1)(b+ δ + r2) + (r1 + b)d],

W (0, 0, 1) = −(b+ k + r1)(b+ δ + r2).

Then, max(W ) ≤ 0 ifR1T ≤ 1. Thus
.
V≤ 0 whenR1T ≤ 1. Therefore, V is a

Lyapunov function. Furthermore, {(1, 0, 0)} is the only positively invariant

subset of the set with
.
V= 0. It follows from LaSalle invariance principle [9,

p. 200], that the disease free equilibrium is globally asymptotically stable
in DT when R1T ≤ 1. �

Appendix E. Proof of Theorem 9

Proof.

Lemma 2. If R1T ≤ 1, then

E

I
−→ δ + d+ r2 − k − r1 +

√
∆T

2k
, when t −→∞, with ∆T = (δ+d+r2−k−r1)2+4kcβ.

Proof. The proof of Lemma 2 is similar to that of Lemma 1. �

dN/dt = (b − µ − di)N and i −→ 0, when R1T ≤ 1. Then dN/dt −→
(b − µ)N , when t −→ ∞. Therefore, N(t) −→ ∞ since we assume that
b > µ.

dI

dt
= kE − (µ+ r2 + δ + d)I

=

[
k
E

I
− (µ+ r2 + δ + d)

]
I.
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Thus, by applying Lemma 2 one gets

dI

dt
−→

[
δ + d+ r2 − k − r1 +

√
∆T

2
− (µ+ r2 + δ + d)

]
I = αT I,

with

αT =

√
∆T − 2µ− δ − r2 − d− k − r1

2
.

As dE/dt = cβ S
N I − (k + r1 + µ)E,S/N −→ 1 and E/I −→ (δ + d + r2 −

k−r1 +
√

∆T )/2k when t −→∞, one gets also that dE/dt −→ αTE. Then,
the infected compartments E and I have the same asymptotic growth rate
αT , and

αT ≥ 0⇐⇒
√

∆T ≥ 2µ+ δ + d+ k + r1 + r2

⇐⇒ ∆T ≥ (2µ+ δ + d+ k + r1 + r2)2

⇐⇒ kcβ ≥ (k + r1 + µ)(µ+ r2 + δ + d)

⇐⇒ R0T ≥ 1.

Thus, we have sign(αT ) = sign(R0T − 1). Therefore,

(E, I) −→ (0, 0) if R0T < 1,

(E, I) −→ (E∗, I∗) with E∗ > 0 and I∗ > 0 if R0T = 1,

(E, I) −→ (∞,∞) if R0T > 1.

For the number T of treated individuals, its derivative (dT/dt = r1E+r2I−
(m+ µ)T ) shows that T has the same asymptotic behavior than that of E
and I. �
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(a) R1T = 0.74

(b) R1T = 1

Figure 8. seits curves with R1T ≤ 1. For (a), we used
b = 2, µ = 1, cβ = 40, k = 20, d = 8, δ = 4, r1 = 10, r2 =
20,m = 20 to get R1T = 0.735. For (b) we used b = 3, µ =
1, cβ = 30, k = 40, d = 3, δ = 4, r1 = 5, r2 = 15,m = 20 that
gives R1T = 1. In both cases, all solutions paths approach
the disease free equilibrium (DFE) (1, 0, 0, 0).
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(a) R1T ≈ 2.128

(b) R1T ≈ 1.418

Figure 9. seits curves with R1T > 1. For (a) we used
b = 2, µ = 1, cβ = 60, k = 40, d = 3, δ = 4, r1 = 5, r2 =
15,m = 20 to get R1T ≈ 2.128. For (b) we used the parame-
ters values except that we set cβ = 40 and get R1T ≈ 1.418.
In (a) all the solutions paths approach the same endemic
equilibrium (s∗, e∗, i∗, τ∗) ≈ (0.450, 0.132, 0.227, 0.191). In
(b) all the solutions paths approach the same endemic equi-
librium (s∗, e∗, i∗, τ∗) ≈ (0.691, 0.058, 0.099, 0.151).
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(a) Numbers (b) Numbers

(c) proportions

Figure 10. SEITS curves with b = 3, µ = 1, cβ = 154, k =
10, d = 10, δ = 3, r1 = 17, r2 = 41,m = 10 that
gives R1T = 0.765, R0T = 0.842. The initial values are
(S(0), E(0), I(0), T (0)) = (2000, 100, 50, 0). The proportions
and the numbers of the infected individuals go to zero while
the population grows exponentially.
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(a) Numbers (b) Numbers

(c) proportions

Figure 11. SEITS curves with b = 3, µ = 1, cβ =
154, k = 10, d = 10, δ = 3, r1 = 17, r2 = 41,m = 10
that gives R1T = 0.901, R0T = 1. The initial values are
(S(0), E(0), I(0), T (0)) = (2000, 100, 50, 0). R1T < 1 thus,
the proportions go to the disease free equilibrium. R0T = 1,
then the numbers of the infected and treatment compart-
ments stabilize to positive values, while the population grows
exponentially.
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(a) Numbers

(b) proportions

Figure 12. SEITS curves with b = 3, µ = 1, cβ = 40, k =
20, d = 2, δ = 3, r1 = 3, r2 = 6,m = 10 that gives
R1T = 2.198, R0T = 2.778, i∗ = 0.346, αT = 1.509, R2T =
2.012, where the initial values are (S(0), E(0), I(0), T (0)) =
(950, 30, 20, 0). The proportions go to an endemic equilib-
rium, while the number of individuals in each compartment
grow exponentially.
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(a) Numbers

(b) proportions

Figure 13. SEITS curves with b = 3, µ = 1, cβ = 154, k =
10, d = 10, δ = 3, r1 = 3, r2 = 6,m = 10 that gives R1T ≈
4.38, R0T = 5.5, s∗ ≈ 0.18, e∗ = 0.4, τ∗ ≈ 0.22, i∗ = 0.2, αT =
0, R2T = 1. The initial values are (S(0), E(0), I(0), T (0)) =
(2000, 30, 20, 0). The proportions go to an endemic equilib-
rium and the numbers also go to an endemic equilibrium.
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(a) Numbers

(b) proportions

Figure 14. SEITS curves with b = 3, µ = 1, cβ = 100, k =
20, d = 10, δ = 3, r1 = 3, r2 = 6,m = 10 that gives
R1T ≈ 3.50, R0T ≈ 4.17, s∗ = 0.22, e∗ = 0.26, τ∗ = 0.24, i∗ =
0.27, αT = −0.74, R2T ≈ 0.80. The initial values are
(S(0), E(0), I(0), T (0)) = (2000, 30, 20, 0). The proportions
approach an endemic equilibrium, while the sizes vanish.


