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THE EXISTENCE OF SOLUTIONS FOR DIRICHLET
PROBLEM WITH NONCONVEX NONLINEARITY

TOMASZ GRABSKI*

Abstract. We consider the existence of solutions for a nonlinear Dirichlet
problem

Az(y) +z(y) = Fa(y, z(y))

ae. x| Q =0 where Q C RF and F is nonconvex. We introduce a dual
variational method with the aid of which the existence result is obtained.

1. INTRODUCTION

The aim of the paper is to prove the existence of solutions to the following
Dirichlet problem

(1) Ax(y) +x(y) = Fa(y,2(y)), ©: Q= R

where € is a locally Lipschitz.

The aim of the paper is to study a certain type of nonlinear, superlinear
elliptic problems, i.e. to prove that the solution exists and investigate du-
ality relations between various action functionals. On the nonlinearity we
impose some general nonrestrictive conditions.

As concerns the existence of solutions, the similar problems are consid-
ered in [3], [4], [6], [8], [9], [10], [13], [14] by other methods depending on
a topological argument or a different variational approach. The dual varia-
tional method allows one to consider the growth condition that cannot be
treated by the classical variational method and also by dual least action
principle see for example. The main difference between our result and some
other results cited is that we do not assume the convexity of F'. Once this
assumption is lacking other methods cannot be applied.

Instead we require that set § is locally lipschitz subset of R¥, functional
F satisfies:
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(Al) F:Q x R — R is measurable with respect to the first variable and
finite,

(A2) 2 — i[z|?—F(y, ) is convex and lower semicontinous for a.e. y € Q,

(A3) there exists a Carathedory function K, K : QxR — R, e.g.measurable
with respect to the first variable and continous with respect to the
second one and such that for all z € R and a.e. y € 2

%|$|2 - F(y,l’) > K(y7x)

Thorought the paper we assume that (A1), (A2), (A3) hold.
Following function satisfies above conditions:

F(y,x) = —€" f(y) + 327,
where f(y) € L, f(y) > 0.

2. DUALITY RESULTS

In order to prove the existence of solutions we have first to develop a du-
ality theory i.e. the theory which relates the critical points and the critical
values to the action functional

2) J(z) = / (1) - L) + Fly,2(v)} dy
Q

i.e. such a functional for which equation (1) is Euler-Lagrange equation and

dual functionals. We will use two dual functionals which will be defined

below. In the sequel we will use the following sets:
A={Vze*(,R"):zecW,?(,R)},

B = {pe L*(Q,R") : there exists divp € L*(Q, R)},
C={peW"(Q,R") :divp(y) =0 for a.e. y € Q},
D = {divp € L*(Q, R) : p € B}.

Let

(3) Gly,v) = sup { (,v) = Flal® + F(y,2) },
zeR

for a.e. ¥y € R, v € R denote the Fenchel-Young dual of a convex function
z +— 1|z|> — F(y,z). Hence G itself is convex and lower semicontinous for
a.e. y € .

Definition 1. The dual functional Jp : B+ C — R is given by

4 Jplpto) = / [=1p(y) + o) + Gly, — div(p()) } dy.
Q
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Definition 2. The Clarke dual functional is defined by

oz, divp) = /{ ), divp())) + Gy, — divp(y)) + L Va(y)?} dy

where x € Wol’Q(Q, R), divp € L*(, R).
In order to avoid the calculations of Fenchel-Young transform with respect

to a dual space we introduce a perturbation function at J, : L*°(Q, R) — R
by the formula

(5)  Ju(g) = / {=3IVa(y)]® + 5lz(W) + 9 + F(y.=(y) + g(y)) } dy.
Q

and for x € WO1 2(€, R) we consider a type of Fenchel-Young dual

JE(p)= sup )/{<—divp(y),g(y)>—F(y,x(yHg(y))+

€L2(Q,R
geL?( s

+3Vay)|? — 3la(y) + g(y)* Hdy.

Using (3) we obtain
( / {Gly,~divply)) + V() - (- divp(y). o(v))} v

Using (6),(4) we get for any p € B:

sup  (=JF(—p)) =
€Wy ?(Q,R)

— sup / Gy, — divp(y)) — 3V2()2 + (p(y), V() } dy =

VzeA

= 7}2@/ {31p(y) +v(W)* — Gy, — divp(y)) } dy = 3gg—JD(p + ).
Q

Let us introduce the second dual by the formula JI7 : L*(,R) — R,
where x € 1/1/01’2(97 R):

THE(g) = sup / {{g(w) b)) + (2(0). b)) — V() — Gly.h(y))} dy.

heD
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Observe that for any x € WOI’Z(Q, R) we have JZ7(0) = —J(z). Indeed by
density of D w L?(£2, R) we get:

JHHO0) = sup / [(2(y), h(w)) — YV — Gy, h(y))} dy =

heL2(Q.R) )
= / [~V + La()P — Fly.a(y)} dy = I ().

Now we may prove two duality principles which relate the critical values to
the action and the dual functionals.

Theorem 1. Duality Principle 1

inf J(x) = inf supJp(p+v).
zeW?(Q,R) ) divpeD yeC ( )

Proof. By definitions of C' and D we get:
sup  JFH(0) =
zeW,2(Q,R)

= s s [ (o).~ diva) - Glo,~divplw) ~ V()P dy =
zeWy ?(Q,R) divpeD A

= sup sup (—Jf(—p)) = sup inf(—Jp(p+v))=
divpeD zeWwl2(Q,R) divpeD vEC

= — f J
ok 51 Jp(p + v).

From the above and equality JZ 7 (0) = —J(z) we obtain:
inf  J(z)= inf sup Jp(p+v).

€Wy *(Q,R) divpeD
O
Theorem 2. Duality Principle 11
inf supJp(p+v) = inf Jo(z,divp).
divpeD yeC €Wy *(Q,R), div peD

Proof. For divp € D we have:

inf Jo(x,divp) =
z€W,2(Q,R) o P)

inf /{ ), div p(y >éwmm%@+/m%ﬂmmm@:

xewol 2(Q,R) J

= — sup /{ Va(y),p(y) +vp) — 3| Va(y }dy—l—/G —divp(y))dy.

VzeA
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The first term is a Fenchel-Young conjugate of a function f(y) — % [ 1f(y)|*dy

Q
calculated at p + v, where

vy = arguinco [ Ip(y) +oldy
Q

This conjugate reads %f Ip(y) + vp|2dy. Finally
Q
inf Jo(z,divp) = Jp(p+ vp) =sup Jp(p +v)
xGWOLQ(Q,R) veC
and therefore

inf Jo(z,divp) = inf supJp(p+v).
me‘/Volz(Q:R%diVpGLQ(Q,R) divp€eD yeo

0

Now we prove the lemma which allows one to estimate from below the
functional G from the definition of Jp.

Lemma 1. Let G: Q2 x R — R, be given by

G(y,v) = sup ((z,v) — 3|z|* + F(y,2)) ,y € Qv e R
TER

and let F' be measurable with respect to the first variable and finite. Then
for any v € R and a.e. y € ()

Gly,v) = F*(y,v) + 3[vf?
where F** denotes the second conjugate of F(y,-).
Proof. From Fenchel-Young inequality we have
F(y, 2) 2 (z,2) = F(y, z)
for any y € Q,x,2 € R.
F*(y,2) + g2 —af* > gz = F(y, )

for any y € Q, 2,z € R.
Hence

mIf%{F*(y,z) + %’Z - $|2} > %|ZIZ’2 - F(y,flf)
zE
Denoting g(z) = 3|z|* we get

inf {F*(y,2) + g(z — 2)} = gla’ = F(y.2)

for z € R.
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Denoting (f @ g)(u) = ;g)f{(f(m) +g(u—2)) dlau € X we get

(Fy @ g)(x) > 3laf” — F(y,z)

for any = € R.
From properties of conjugate we have for any y € Q,v € R

(Fy ®9)"(v) < Gy, v).
So
F2(y,v) + 9" (v) < G(y,v).
Because g*(v) = 3|v|? it follows y € Q, v € R:

G(y,v) > F*(y,v) + 5|v[%

3. VARIATIONAL PRINCIPLES

In this section we formulate and prove the variational principles which
relate the critical points to the action and the dual action functional.

Theorem 3. The pair (z,div p) minimizes Jo on W&’2(Q,R) x D iff divp
minimizes sup Jp(p +v) on D, T minimizes J na W01’2(Q, R) and at least

veC
one of the following conditions hold:
(7) J(z) = Jz(=p— 1) =0
(8) IJp(p+7v) = Jz(=p—0v) =0

here JZ% is Fenchel-Young conjugate of Jz and v = argsup Jp(p + v) for
vedl.

Proof. Assume first that (z,div p) minimizes Jo on I/V01’2(Q7 R) x D. By (1)
and (2) we get

(9) Jo(z,divp) = inf supJp(p+v)
divpeD yeco
and
(10) inf  Jo(z,divp) = sup Jp(p + v).
zeW % (Q,R) vel

Since by inf  Jo(z,divp) < Jo(z,divp), it follows from (9) and (10)
zeW, 2(Q,R)
that

Jp(p+7v)= inf supJp(p+v).
divpeD e
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Similiary for z € WOI’Q(Q7 R).
inf Jo(z,divp) =

divpeD
-t / (). divp0)) + Glo. — divpo)) by + § [ 1Vot) Py =
Q
— / (o).~ diplu) — Glo.—divp)} dy -+ § [ (Valo)Pay
divpeD
Q
By the assumptions on F' and definition of G we have
it Jo(,divp) = / {Pl.o(w) - He)P} dy+} [ 1Val)Pdy = (o).
ivp
It follows
(11) inf Jo(z,divp) = J(Z).
divpeD

By duality principle and the assumption we have:

(12) Jo(z,divp) = inf  J(x).
zeW? (QLR)

Since . meJc(x divp) < Jo(z,divp) then (11) i (12) follows that
v pe

J(z) = inf J(x).
€W,y ?(Q,R)

In a consequence
J(z) = Jo(z,divp) = Jp(p+ 0).
Since Jo(Z, divp) = Ji(—p — v) and by the above we have (7) and (8).

Let us assume that Z minimizes J on W& ’Q(Q, R), div p minimizes
sup Jp(p+v) on D, J(z) = Jp(p+ v) and (7) holds.
veC

Since by (7) it follows that J(z) = JZ(—p —v) > —oo and Jo(z,divp) =
J%(—p—v) we have that Jo(Z,divp) is finite. By duality principle we have

J(z) = inf Jo(z,div p)
€Wy *(Q,R),div peD

From the above it follows

inf Jo(z,divp) = Jo(z,divp).
€W,y ? (Q,R),div peD

Assuming (8) we have that
Jp(p+9) = J(z) = Ji(—p—v) = Jo(z,div p)
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is finite. On the other hand

Jp(—p—17v) = inf Jo(z,divp)
€Wy (Q,R),divpeD

and the lemma is proved. O
Theorem 4. Let z € W&’Z(Q,R) be such that

—o0 < J(Z) = inf  J(x) < 0.
€W, ?(Q,R)

Then there exists p=p+v € B + C such that:

Jp(p) = inf _supJp(p+v).
divpeD e

Moreover
JZ (=) + Jz(0) =0,
J¥(—p) — Jp(p) = 0.

Proof. By remarks following relation (3) we see that functional
M) = - [ @), ~+0) - Gl ~=@)}dy 2 € L*Q.R)
Q

is convex and lower semicontinous. By (3) we have

Gy, —2(y)) = . {{z(y), —2(y)) — 3l=W)]* + F(y,z(y))},

so by (A3) we obtain that M is coercive.
Since L?(f2, R) is reflexive it follows functional M attains infimum at
a certain point z € L?(£2, R). On the other hand we have

sup  (—M(z)) = mm)/k@@»z@»awawnwz
Q

z€L2(Q,R) 2€L2(Q,R

=/ka@@»aﬂ%dy
Q

By the above it follows
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Let p € B be such that divp = z. We may put

Y1
ﬁ(y) = </2(t,y2,...,yn)dt,O,...,0>,
——

(e%1 n—1

where y = (y1,...,yn), and a = (a1, ...,qy) is fixed in region 2). Define
Dy = P+ v, where v € C. We have divp, = divp = Z. In a consequence by
definitions of J¥ and Jz, and by (13) we have

(14) J#(=py) + J=(0) = 0.
Moreover Ji(—divp,) = JZ (—p,). Indeed
JE(—div p,) =

— sup / [ div (), g)) + LVEQ) — Fly.2(y) + g(y))} dy =
g€L2(Q,R)Q

— [ {92 + (- divpuln),2(u) + Glo, ~ div ()} dy = T (7).
Q

Observe now that since C' is a closed subspace of a reflexive space it itself
is reflexive. Hence the mapping

C50— / {=313(y) + v(y)® + Gly, — divi(y))} dy
Q

is convex, l.s.c. and coercive. It attains its infimum at certain v € C. Since

Jz(0) = —J(z), and by (14) we have

~J(@) = ~JF(~p) < sup  (=JZ(~pv)) = —sup Ip(p+v) = —Jp(p),
zeW 2 (Q,R) veC

where p = p+ v. Since divp = divp, z (14) we have
T#(=p) + J5(0) = 0.
By the above and the duality principle we have

Jp(p) = inf J )
o) = ot sup Jo(p+)
Now the equality J¥ (—p) — Jp(p) = 0 is a consequence of the equality
Jp(p) = J(z) = —Jz(0).

U

Now we provide a certain version of the above results which is valid
for minimizing sequences. We present the dual version of the so called
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e-variational principle. In order to do so we introduce the perturbation
functional defined by

(15)  Jp,(h) = / [31p() + (@) — Gly, — div p(y)) } dy,
Q

for any p € B.

Theorem 5. Let {p,}nen C B be a minimizing sequence Jp on B and let
—00 < in]fVJD(pn) < oo,n € N. Let n € N element x,, € WOI’2(Q,R), be
ne
such that
Vxn = DPn

then {xn}nen C T/V01’2(§27 R) is a minimizing sequence for J on Wol’Q(Q, R)
i.e.

inf J(z,) = inf  J(x),
neN €W ? (Q,R)
Moreover for any n € N
(16) Jp,, (0) + JF (=pn) =0

and for each € > 0 there exists ng € N such that for any n > ng
T3 (=pn) = J(n) <&
Jp(=pn) — J(xn) < e.

Proof. We have

divlgralefD) To(p) = ;Ielzfv Tp(pn) = ¢ > —oo.

By the definition of minimum we have that for Ve > 0 3dng € N such that
for any n > ng e > Jp(pn) — c.
Since x,, is chosen so that
VI, = pp,
we have

[ A0, 5nl) = 3190 dy = [ Siont) P
Q Q

In a consequence

/ {(Ven(y) pa(v)) — HVen (W) — Gly, — div po ()} dy =
Q

N / {zlPa ) = Gly, = divpu(y))} dy,
Q
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so (16) hold. For any n € N we have
Jp, (Va,) =

=  sup / {(Van (), h(y)) = 5lpn(y) + h(y)|* — Gy, —divpn(y)) } dy =
her2(@r)

/{<$n(y)adinn(y)> - %|V$n(y)\2 -Gy, — dinn(y))} dy = Ji(—pn),
Q

where JBP is a F-Y conjugate of Jp, . By the above and by the properties
of the subdifferential we have Vz,, € 9.Jp,(0).

We show now that {xy, }nen C W(}’Z(Q, R) is minimizing for J on Wol’Q(Q, R).
By the definition it follows that Jp, (0) = —Jp(pn). By (16),(6) we get
that Ve > 0 dng € N Vn > ny we have

#(_ ; #(_ _
cte>dp(pa) 2 JE(p) 2 inf (T (-p) =

— sw / {(— divp(y), 2n(®)) — 3V — Cly, — divp(y))} dy =
pEL2(Q,R"

Q
= [ {6 a) - HVa )7 dy = T o).
Q

— inf J(z,), by (1) we h
So ¢ rigNJ(:r ), by (1) we have

inf J(x,)=c= inf n) = inf = inf :
a2y o) = e = S TP = B PP T e T

To prove the last assertion we use the definition of c¢. Since Ji(—]?n) <
c+e Vn > ng we get
J# (—pn) — J(zn) <cte—c=e.
By the above for any n > ng we have
Jp(pn) —J(xp) <c+e—c=c¢

and
J(xn) —JIp(pn) <c+e—c=e.
Il

Now we may get the following

Corollary 1. If {pp}tnen C B is a minimizing sequence for Jp on B
and —oco < in]fv Jp(pn) < oo, n € N there exists sequence {xp}nen C
ne

I/Vol’z(Q7 R) minimizing functional J on W&’Q(Q, R), such that ¥n € N

Van(y) = pn(y)
a.e. y € .
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4. EXISTENCE OF SOLUTIONS

To the end of the paper we consider the sequences {xx} i {pr} (zr €
C(Q), pr € CHQ), k € N) such that {xy,divpy} € W01’2(Q,R) x D is
minimizing sequence for Jo.

We assume that
(17) [kl < Coll Vg2,
for a certain C; < 1 (Cy = C1(R2)) and for each k € N, moreover
(18) vol Q1 < 1.

Theorem 6. There exist a pair (Z,div p) minimizing Jo on Wol’2(Q, R)xD
1.€.

Jo(z,divp) = inf Jo(z,div p).
QCEWOL2(Q,R),diV peD

Proof. Let {xy,divpg} € W01’2(Q, R) x D be a minimizing sequence to Jc.
We show that sequence is bounded on VVO1 (€, R) x D. From (1)

G(y,v) = F*(y,v) + 3]v>,  yeQueR
For each k£ € N we have:

Jo(xg, divpg) >

/ {an (), div pi()) + F*(y, — div pi () + 3] div p()[? + 1| Var ()2} dy
for any k € N

), div pi( )>dy+/F**(y,—divpk(y))der
)

+5< / | div py(y) Py + / |m<y>|2dy>.
Q Q

Now we consider the set

Jo(xp, divpg) >

{O\

(19)

(20) O, = {(x,divp) : Jo(z,divp) < b}

where b € R is sufficiently large for ®;, # () (for example b > Jo(z1, divpy)).
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Applying Holder inequality for the first integral on the right hand side of
(19) we have:
b > Jo(wg, divpg) >
> —[lzx = || divprllr + 5 (| divpgl72 + IVl 7e) +

+ /F(y —div pi(y))dy.
Q

(21)

Using (17) the above inequality takes the form:
b> g (=2llzkll ol divprl o + | divorl s + [lzx i) +

+ /F**(y, —div pi(y))dy.
Q

From [5] we have:

(22) || div pi |1 < Vvol Q|| div pg || r2-
Denoting V' = 1/vol {2, we have:
b> 3 (=2l|mpl|poe || div pil 1 + V| divpel| 31 + [[2]|Fe) +

+/F**(y,—divpk(y))dy-
Q
Observe that f(z,y) = —2xy+Vy?+2? is nonnegative provided =,y > 0,
V > 1 hence:
—2|zg]| oo || div pyl| 1 + V| divpel|Fs + [Jzkl|Fe > 0.

From (21) we get the following estimate which is uniform with respect to
k:

(23) b > Jo(wg,divpg) > /F**<yv —div pi(y))dy.
Q
By definition of the conjugate we have

F*(y,q) = (v,q) = F*(y,v)
F*(y,q) = sup {{v,q) = F"(y,v)}

vE[—",7]
where r > 0 is a certain constant.
By properties of the supremum:
F**(y,q) > sup (v,q) — sup F*(y,v) >rlql— sup F*(y,v)

vE[—r,T] vE[—r,T] vE[—r,T]
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by the above

(24) /F**(y,—divpk(y))dyzr/\divpk(y)ldy—/ sup F*(y,v)dy.
Q

o vE[—r,r]
Let K = [ sup F*(y,v)dy. By the assumption it follows that K is finite.
Q vE[—r,r]
By inequalities (23),(24) we get:
(25) Jo(zk, —divpg) > || divpg(y)l|r — K.

By (25) we infer that the sequence is bounded {|| div px(y)|| 11 }xen i-e. there
exists a constant C:
| div ()l < C
for any k € N.
By (21) and (17) we have for any k € N:

b> Jo(xg,divpg) >
> —||Vag 2l divprllz + & (| divpel|F2 + [ Vall72) +
+/F**(y,—divpk(y))dy~

Q
By (22) we have for any k € N:

b > —||Vagl g2l divprll s + 5 (VI divpellz + [1Varl72) +

+ [ —aiv i)y
Q

Since the integral [ F**(y,— divpk(y))dy is bounded (uniformly in k €
Q

N) and sequence {|| div px(y)||11 }xen is bounded, it follows that:

{IVarll L2 bren
by corollary (1) is bounded:

(26) {llpr @)l L2 bren
by inequalty (17) it follows that:
(27) {2kl Lo b ren-
Hence (21) we get the boundeness of the sequence:
(28) I divpr| L2 fren-
By reflexivity of L?(2, R*) and L?(), R) and by (26) we may choose

a subsequence {py,} from {pr} which is weakly convergent to a certain
po € L?(92, R") and such that divpy, — 2z, where z € Ly(£2, R) (— denotes
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the weak convergence in L?(Q2, R)). The resulting subsequence {py,} we
denote by {pg}.

Now we show that divpg exists and div pg = 2. Indeed by weak conver-
gence of {pr} to po we have for arbitrary h € L?(2, R¥):

(29) timn [ ulo): By = [ (oo(w). b))y,

—00

Q Q

Using the weak convergence of {div pi}xen to z in L?(Q, R) we have for any
g € L?(, R):

k—oo

Q Q

(30) lim | (divpe(y), g(y))dy = / (2(y), 9(y))dy.

By (29) and (30) we obtain for any h € C3°(, R):

/ {po(y), Vh(y))dy = lim / (pr(y), Vh(y))dy =
Q Q

— tim [ (divpu(y), h(y))dy = / (), h(y))dy.

k—o00
Q Q

Hence for all h € C§°(Q, R):

[ onla). Fhw) + (x(0). hw))dy = .

Q

Thus by Eulera-Lagrange lemma it follows that div pg(y) = z(y) for a.e.
y € Q.

In order to show that Jo attains an infimium on L?(Q, R") x L?(Q, R")
it suffices to show that

(31) likm inf Jo(x, divpg) > Jo(z,divp).

By boundness of {||Vx(y)| L, } ke n and Poincare inequality it follows that
{x1}ren is also bounded in L?. By reflexivity of W2(Q2, R) we have the
existence of a weak limit . By Aubin’s lemmal|2] it follows that {xy }ren is
strongly convergent on L2(Q, R") to & € L?(), R).

Since {wy}ren is strongly convergent on L?(2, R) and {divp}ren is
weakly convergent on L%(Q, R) it follows

G2t [ (o) dvp@) dy = [ (@), divpw) dy
Q Q
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Since G is convex and lower semicontinous it follows that L?(2, R) > divp —
J G(y, — div p(y)dy is convex and lower semicontinous so it is weakly lower
Q

semicontinous.Hence

(3)  lmint / (Gy, — divpi(y)} dy > / {Gly, — divp(y)} dy.

Since L*(Q, R") 3 Vz > 3 f]Va: )2dy

(34) imin § [ [Vou)Pdy > [ [Va()dy.
Q

Hence by (32), (33), (34) we have

likm inf Jo (2, div pg) =

= limin / [ (), div pe(u))) + Gly, — div pe(y)) + 3 Van(y)[2} dy >

/ [(@(y), divp(y))) + Gy, — div p(y)) + 3 VEW) 2} dy = Jo(z, div p).

0
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