
Folia Mathematica Acta Universitatis Lodziensis

Vol. 16, No. 1, pp. 3–19 c© 2009 for University of  Lódź Press

THE EXISTENCE OF SOLUTIONS FOR DIRICHLET
PROBLEM WITH NONCONVEX NONLINEARITY

TOMASZ GRABSKI‡

Abstract. We consider the existence of solutions for a nonlinear Dirichlet

problem

∆x(y) + x(y) = Fx(y, x(y))

a.e. x | Ω = 0 where Ω ⊂ Rk and F is nonconvex. We introduce a dual
variational method with the aid of which the existence result is obtained.

1. Introduction

The aim of the paper is to prove the existence of solutions to the following
Dirichlet problem

(1) ∆x(y) + x(y) = Fx(y, x(y)), x : Ω → R

where Ω is a locally Lipschitz.
The aim of the paper is to study a certain type of nonlinear, superlinear

elliptic problems, i.e. to prove that the solution exists and investigate du-
ality relations between various action functionals. On the nonlinearity we
impose some general nonrestrictive conditions.

As concerns the existence of solutions, the similar problems are consid-
ered in [3], [4], [6], [8], [9], [10], [13], [14] by other methods depending on
a topological argument or a different variational approach. The dual varia-
tional method allows one to consider the growth condition that cannot be
treated by the classical variational method and also by dual least action
principle see for example. The main difference between our result and some
other results cited is that we do not assume the convexity of F . Once this
assumption is lacking other methods cannot be applied.

Instead we require that set Ω is locally lipschitz subset of Rk, functional
F satisfies:
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(A1) F : Ω×R → R is measurable with respect to the first variable and
finite,

(A2) x 7→ 1
2 |x|

2−F (y, x) is convex and lower semicontinous for a.e. y ∈ Ω,
(A3) there exists a Carathedory function K, K : Ω×R → R, e.g.measurable

with respect to the first variable and continous with respect to the
second one and such that for all x ∈ R and a.e. y ∈ Ω

1
2 |x|

2 − F (y, x) ≥ K(y, x).

Thorought the paper we assume that (A1), (A2), (A3) hold.
Following function satisfies above conditions:

F (y, x) = −exf(y) + 1
4x2,

where f(y) ∈ L∞, f(y) > 0.

2. Duality results

In order to prove the existence of solutions we have first to develop a du-
ality theory i.e. the theory which relates the critical points and the critical
values to the action functional

(2) J(x) =
∫
Ω

{
1
2 |∇x(y)|2 − 1

2 |x(y)|2 + F (y, x(y))
}

dy

i.e. such a functional for which equation (1) is Euler-Lagrange equation and
dual functionals. We will use two dual functionals which will be defined
below. In the sequel we will use the following sets:

A = {∇x ∈ L2(Ω, Rn) : x ∈ W 1,2
0 (Ω, R)},

B =
{
p ∈ L2(Ω, Rn) : there exists div p ∈ L2(Ω, R)

}
,

C =
{
p ∈ W 1,2(Ω, Rn) : div p(y) = 0 for a.e. y ∈ Ω

}
,

D =
{
div p ∈ L2(Ω, R) : p ∈ B

}
.

Let

(3) G(y, v) = sup
x∈R

{
〈x, v〉 − 1

2 |x|
2 + F (y, x)

}
,

for a.e. y ∈ R, v ∈ R denote the Fenchel-Young dual of a convex function
x 7→ 1

2 |x|
2 − F (y, x). Hence G itself is convex and lower semicontinous for

a.e. y ∈ Ω.

Definition 1. The dual functional JD : B + C → R is given by

(4) JD(p + v) =
∫
Ω

{
−1

2 |p(y) + v(y)|2 + G(y,−div(p(y))
}

dy.
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Definition 2. The Clarke dual functional is defined by

JC(x,div p) =
∫
Ω

{
〈x(y),div p(y))〉+ G(y,−div p(y)) + 1

2 |∇x(y)|2
}

dy

where x ∈ W 1,2
0 (Ω, R), div p ∈ L2(Ω, R).

In order to avoid the calculations of Fenchel-Young transform with respect
to a dual space we introduce a perturbation function at Jx : L∞(Ω, R) → R
by the formula

(5) Jx(g) =
∫
Ω

{
−1

2 |∇x(y)|2 + 1
2 |x(y) + g(y)|2 + F (y, x(y) + g(y))

}
dy.

and for x ∈ W 1,2
0 (Ω, R) we consider a type of Fenchel-Young dual

J#
x (p) = sup

g∈L2(Ω,R)

∫
Ω

{〈−div p(y), g(y)〉 − F (y, x(y) + g(y)) +

+ 1
2 |∇x(y)|2 − 1

2 |x(y) + g(y)|2}dy.

Using (3) we obtain

(6) J#
x (p) =

∫
Ω

{
G(y,−div p(y)) + 1

2 |∇x(y)|2 − 〈−div p(y), x(y)〉
}

dy.

Using (6),(4) we get for any p ∈ B:

sup
x∈W 1,2

0 (Ω,R)

(−J#
x (−p)) =

= sup
∇x∈A

∫
Ω

{
−G(y,−div p(y))− 1

2 |∇x(y)|2 + 〈p(y),∇x(y)〉
}

dy =

= inf
v∈C

∫
Ω

{
1
2 |p(y) + v(y)|2 −G(y,−div p(y))

}
dy = inf

v∈C
−JD(p + v).

Let us introduce the second dual by the formula J##
x : L2(Ω, R) → R,

where x ∈ W 1,2
0 (Ω, R):

J##
x (g) = sup

h∈D

∫
Ω

{
〈g(y), h(y)〉+ 〈x(y), h(y)〉 − 1

2 |∇x(y)|2 −G(y, h(y))
}

dy.
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Observe that for any x ∈ W 1,2
0 (Ω, R) we have J##

x (0) = −J(x). Indeed by
density of D w L2(Ω, R) we get:

J##
x (0) = sup

h∈L2(Ω,R)

∫
Ω

{
〈x(y), h(y)〉 − 1

2 |∇x(y)|2 −G(y, h(y))
}

dy =

=
∫
Ω

{
−1

2 |∇x(y)|2 + 1
2 |x(y)|2 − F (y, x(y))

}
dy = −J(x).

Now we may prove two duality principles which relate the critical values to
the action and the dual functionals.

Theorem 1. Duality Principle I

inf
x∈W 1,2

0 (Ω,R)
J(x) = inf

div p∈D
sup
v∈C

JD(p + v).

Proof. By definitions of C and D we get:

sup
x∈W 1,2

0 (Ω,R)

J##
x (0) =

= sup
x∈W 1,2

0 (Ω,R)

sup
div p∈D

∫
Ω

{
〈x(y),−div p(y)〉 −G(y,−div p(y))− 1

2 |∇x(y)|2
}

dy =

= sup
div p∈D

sup
x∈W 1,2

0 (Ω,R)

(−J#
x (−p)) = sup

div p∈D
inf
v∈C

(−JD(p + v)) =

= − inf
div p∈D

sup
v∈C

JD(p + v).

From the above and equality J##
x (0) = −J(x) we obtain:

inf
x∈W 1,2

0 (Ω,R)
J(x) = inf

div p∈D
sup
v∈C

JD(p + v).

�

Theorem 2. Duality Principle II

inf
div p∈D

sup
v∈C

JD(p + v) = inf
x∈W 1,2

0 (Ω,R), div p∈D
JC(x, div p).

Proof. For div p ∈ D we have:

inf
x∈W 1,2

0 (Ω,R)
JC(x,div p) =

= inf
x∈W 1,2

0 (Ω,R)

∫
Ω

{
〈x(y),div p(y))〉+ 1

2 |∇x(y)|2
}

dy +
∫
Ω

G(y,−div p(y))dy =

= − sup
∇x∈A

∫
Ω

{
〈∇x(y), p(y) + vp〉 − 1

2 |∇x(y)|2
}

dy +
∫
Ω

G(y,−div p(y))dy.
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The first term is a Fenchel-Young conjugate of a function f(y) 7→ 1
2

∫
Ω

|f(y)|2dy

calculated at p + vp where

vp = argminv∈C

∫
Ω

|p(y) + v|2dy

This conjugate reads 1
2

∫
Ω

|p(y) + vp|2dy. Finally

inf
x∈W 1,2

0 (Ω,R)
JC(x,div p) = JD(p + vp) = sup

v∈C
JD(p + v)

and therefore

inf
x∈W 1,2

0 (Ω,R),div p∈L2(Ω,R)
JC(x,div p) = inf

div p∈D
sup
v∈C

JD(p + v).

�

Now we prove the lemma which allows one to estimate from below the
functional G from the definition of JD.

Lemma 1. Let G : Ω×R → R, be given by

G(y, v) = sup
x∈R

(
〈x, v〉 − 1

2 |x|
2 + F (y, x)

)
, y ∈ Ω, v ∈ R

and let F be measurable with respect to the first variable and finite. Then
for any v ∈ R and a.e. y ∈ Ω

G(y, v) ≥ F ∗∗(y, v) + 1
2 |v|

2

where F ∗∗ denotes the second conjugate of F (y, ·).

Proof. From Fenchel-Young inequality we have

F ∗(y, z) ≥ 〈x, z〉 − F (y, x)

for any y ∈ Ω, x, z ∈ R.

F ∗(y, z) + 1
2 |z − x|2 ≥ 1

2 |x|
2 − F (y, x)

for any y ∈ Ω, x, z ∈ R.
Hence

inf
z∈R

{
F ∗(y, z) + 1

2 |z − x|2
}
≥ 1

2 |x|
2 − F (y, x).

Denoting g(x) = 1
2 |x|

2 we get

inf
z
{F ∗(y, z) + g(x− z)} ≥ 1

2 |x|
2 − F (y, x)

for z ∈ R.
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Denoting (f ⊕ g)(u) = inf
x∈X

(f(x) + g(u− x)) dla u ∈ X we get

(F ∗y ⊕ g)(x) ≥ 1
2 |x|

2 − F (y, x)

for any x ∈ R.
From properties of conjugate we have for any y ∈ Ω, v ∈ R

(F ∗y ⊕ g)∗(v) ≤ G(y, v).

So
F ∗∗(y, v) + g∗(v) ≤ G(y, v).

Because g∗(v) = 1
2 |v|

2 it follows y ∈ Ω, v ∈ R:

G(y, v) ≥ F ∗∗(y, v) + 1
2 |v|

2.

�

3. Variational principles

In this section we formulate and prove the variational principles which
relate the critical points to the action and the dual action functional.

Theorem 3. The pair (x̄, div p̄) minimizes JC on W 1,2
0 (Ω, R)×D iff div p̄

minimizes sup
v∈C

JD(p + v) on D, x̄ minimizes J na W 1,2
0 (Ω, R) and at least

one of the following conditions hold:

(7) J(x̄)− J∗x̄(−p̄− v̄) = 0

(8) JD(p̄ + v̄)− J∗x̄(−p̄− v̄) = 0

here J∗x̄ is Fenchel-Young conjugate of Jx̄ and v̄ = arg sup JD(p̄ + v) for
v ∈ C.

Proof. Assume first that (x̄,div p̄) minimizes JC on W 1,2
0 (Ω, R)×D. By (1)

and (2) we get

(9) JC(x̄,div p̄) = inf
div p∈D

sup
v∈C

JD(p + v)

and

(10) inf
x∈W 1,2

0 (Ω,R)
JC(x,div p̄) = sup

v∈C
JD(p̄ + v).

Since by inf
x∈W 1,2

0 (Ω,R)
JC(x, div p̄) ≤ JC(x̄,div p̄), it follows from (9) and (10)

that
JD(p̄ + v̄) = inf

div p∈D
sup
v∈C

JD(p + v).
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Similiary for x ∈ W 1,2
0 (Ω, R).

inf
div p∈D

JC(x, div p) =

= inf
div p∈D

∫
Ω

{〈x(y),div p(y)〉+ G(y,−div p(y))} dy + 1
2

∫
Ω

|∇x(y)|2dy =

= − sup
div p∈D

∫
Ω

{〈x(y),−div p(y)〉 −G(y,−div p(y))} dy + 1
2

∫
Ω

|∇x(y)|2dy.

By the assumptions on F and definition of G we have

inf
div p∈D

JC(x,div p) =
∫
Ω

{
F (y, x(y))− 1

2 |x(y)|2
}

dy+1
2

∫
Ω

|∇x(y)|2dy = J(x).

It follows

(11) inf
div p∈D

JC(x̄,div p) = J(x̄).

By duality principle and the assumption we have:

(12) JC(x̄,div p̄) = inf
x∈W 1,2

0 (Ω,R)
J(x).

Since inf
div p∈D

JC(x̄,div p) ≤ JC(x̄, div p̄) then (11) i (12) follows that

J(x̄) = inf
x∈W 1,2

0 (Ω,R)
J(x).

In a consequence

J(x̄) = JC(x̄,div p̄) = JD(p̄ + v̄).

Since JC(x̄,div p̄) = J∗x̄(−p̄− v̄) and by the above we have (7) and (8).
Let us assume that x̄ minimizes J on W 1,2

0 (Ω, R), div p̄ minimizes
sup
v∈C

JD(p + v) on D, J(x̄) = JD(p̄ + v̄) and (7) holds.

Since by (7) it follows that J(x̄) = J∗x̄(−p̄− v̄) > −∞ and JC(x̄,div p̄) =
J∗x̄(−p̄− v̄) we have that JC(x̄,div p̄) is finite. By duality principle we have

J(x̄) = inf
x∈W 1,2

0 (Ω,R),div p∈D
JC(x,div p)

From the above it follows

inf
x∈W 1,2

0 (Ω,R),div p∈D
JC(x, div p) = JC(x̄,div p̄).

Assuming (8) we have that

JD(p̄ + v̄) = J(x̄) = J∗x̄(−p̄− v̄) = JC(x̄, div p̄)



10 Tomasz Grabski

is finite. On the other hand

JD(−p̄− v̄) = inf
x∈W 1,2

0 (Ω,R),div p∈D
JC(x,div p)

and the lemma is proved. �

Theorem 4. Let x̄ ∈ W 1,2
0 (Ω, R) be such that

−∞ < J(x̄) = inf
x∈W 1,2

0 (Ω,R)
J(x) < ∞.

Then there exists p̄ = p̃ + v̄ ∈ B + C such that:

JD(p̄) = inf
div p∈D

sup
v∈C

JD(p + v).

Moreover
J#

x̄ (−p̄) + Jx̄(0) = 0,

J#
x̄ (−p̄)− JD(p̄) = 0.

Proof. By remarks following relation (3) we see that functional

M(z) = −
∫
Ω

{〈x̄(y),−z(y)〉 −G(y,−z(y))} dy , z ∈ L2(Ω, R)

is convex and lower semicontinous. By (3) we have

G(y,−z(y)) = sup
x∈L2(Ω,R)

{
〈x(y),−z(y)〉 − 1

2 |x(y)|2 + F (y, x(y))
}

,

so by (A3) we obtain that M is coercive.
Since L2(Ω, R) is reflexive it follows functional M attains infimum at

a certain point z̄ ∈ L2(Ω, R). On the other hand we have

sup
z∈L2(Ω,R)

(−M(z)) = sup
z∈L2(Ω,R)

∫
Ω

{〈x̄(y),−z(y)〉 −G(y,−z(y))} dy =

=
∫
Ω

{
F (y, x̄(y))− 1

2 |x̄|
2
}

dy.

By the above it follows∫
Ω

{
F (y, x̄(y))− 1

2 |x̄|
2 − 1

2 |∇x̄(y)|2)
}

dy +

+
∫
Ω

{
〈x̄(y), z̄(y)〉+ G(y,−z̄(y)) + 1

2 |∇x̄(y)|2
}

dy = 0.

(13)
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Let p̃ ∈ B be such that div p̃ = z̄. We may put

p̃(y) =

( y1∫
α1

z̄(t, y2, ..., yn)dt, 0, ..., 0︸ ︷︷ ︸
n−1

)
,

where y = (y1, ..., yn), and α = (α1, ..., αn) is fixed in region Ω). Define
p̃v = p̃ + v, where v ∈ C. We have div p̃v = div p̃ = z̄. In a consequence by
definitions of J#

x̄ and Jx̄, and by (13) we have

(14) J#
x̄ (−p̃v) + Jx̄(0) = 0.

Moreover J∗x̄(−div p̃v) = J#
x̄ (−p̃v). Indeed

J∗x̄(−div p̃v) =

= sup
g∈L2(Ω,R)

∫
Ω

{
〈−div p̃v(y), g(y)〉+ 1

2 |∇x̄(y)|2 − F (y, x̄(y) + g(y))
}

dy =

=
∫
Ω

{
1
2 |∇x̄(y)|2 + 〈−div p̃v(y), x̄(y)〉+ G(y,−div p̃v(y))

}
dy = J#

x̄ (−p̃v).

Observe now that since C is a closed subspace of a reflexive space it itself
is reflexive. Hence the mapping

C 3 v 7→ −
∫
Ω

{
−1

2 |p̃(y) + v(y)|2 + G(y,−div p̃(y))
}

dy

is convex, l.s.c. and coercive. It attains its infimum at certain v̄ ∈ C. Since
Jx̄(0) = −J(x̄), and by (14) we have

−J(x̄) = −J#
x̄ (−p̃v) ≤ sup

x∈W 1,2
0 (Ω,R)

(−J#
x̄ (−p̃v)) = − sup

v∈C
JD(p̃+v) = −JD(p̄),

where p̄ = p̃ + v̄. Since div p̄ = div p̃, z (14) we have

J#
x̄ (−p̄) + Jx̄(0) = 0.

By the above and the duality principle we have

JD(p̄) = inf
div p∈D

sup
v∈C

JD(p + v).

Now the equality J#
x̄ (−p̄) − JD(p̄) = 0 is a consequence of the equality

JD(p̄) = J(x̄) = −Jx̄(0).
�

Now we provide a certain version of the above results which is valid
for minimizing sequences. We present the dual version of the so called
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ε-variational principle. In order to do so we introduce the perturbation
functional defined by

(15) JDp(h) =
∫
Ω

{
1
2 |p(y) + h(y)|2 −G(y,−div p(y))

}
dy,

for any p ∈ B.

Theorem 5. Let {pn}n∈N ⊂ B be a minimizing sequence JD on B and let
−∞ < inf

n∈N
JD(pn) < ∞, n ∈ N . Let n ∈ N element xn ∈ W 1,2

0 (Ω, R), be

such that
∇xn = pn

then {xn}n∈N ⊂ W 1,2
0 (Ω, R) is a minimizing sequence for J on W 1,2

0 (Ω, R)
i.e.

inf
n∈N

J(xn) = inf
x∈W 1,2

0 (Ω,R)
J(x),

Moreover for any n ∈ N

(16) JDpn
(0) + J#

xn
(−pn) = 0

and for each ε > 0 there exists n0 ∈ N such that for any n > n0

J#
xn

(−pn)− J(xn) ≤ ε

JD(−pn)− J(xn) ≤ ε.

Proof. We have

inf
div p∈D)

JD(p) = inf
n∈N

JD(pn) = c > −∞.

By the definition of minimum we have that for ∀ε > 0 ∃n0 ∈ N such that
for any n > n0 ε > JD(pn)− c.
Since xn is chosen so that

∇xn = pn,

we have ∫
Ω

{
〈∇xn(y), pn(y)〉 − 1

2 |∇xn(y)|2
}

dy =
∫
Ω

1
2 |pn(y)|2dy.

In a consequence∫
Ω

{
〈∇xn(y), pn(y)〉 − 1

2 |∇xn(y)|2 −G(y,−div pn(y))
}

dy =

=
∫
Ω

{
1
2 |pn(y)|2 −G(y,−div pn(y))

}
dy,
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so (16) hold. For any n ∈ N we have
J∗Dpn

(∇xn) =

= sup
h∈L2(Ω,Rn

∫
Ω

{
〈∇xn(y), h(y)〉 − 1

2 |pn(y) + h(y)|2 −G(y,−div pn(y))
}

dy =

=
∫
Ω

{
〈xn(y),div pn(y)〉 − 1

2 |∇xn(y)|2 −G(y,−div pn(y))
}

dy = J#
xn

(−pn),

where J∗Dpn
is a F-Y conjugate of JDpn

. By the above and by the properties
of the subdifferential we have ∇xn ∈ ∂JDp(0).

We show now that {xn}n∈N ⊂ W 1,2
0 (Ω, R) is minimizing for J on W 1,2

0 (Ω, R).
By the definition it follows that JDpn

(0) = −JD(pn). By (16),(6) we get
that ∀ε > 0 ∃n0 ∈ N ∀n > n0 we have
c + ε > JD(pn) ≥ J#

xn
(−pn) ≥ inf

p∈L2(Ω,R)
(J#

xn
(−p)) =

= − sup
p∈L2(Ω,Rn

∫
Ω

{
〈−div p(y), xn(y)〉 − 1

2 |∇xn(y)|2 −G(y,−div p(y))
}

dy =

= −
∫
Ω

{
G(y, xn(y))− 1

2 |∇xn(y)|2
}

dy = J(xn).

So c = inf
n∈N

J(xn), by (1) we have

inf
n∈N

J(xn) = c = inf
n∈N

JD(pn) = inf
p∈L2(Ω,R)

JD(p) = inf
x∈W 1,2(ω,R)

J(x).

To prove the last assertion we use the definition of c. Since J#
xn(−pn) ≤

c + ε ∀n > n0 we get

J#
xn

(−pn)− J(xn) ≤ c + ε− c = ε.

By the above for any n > n0 we have

JD(pn)− J(xn) ≤ c + ε− c = ε

and
J(xn)− JD(pn) ≤ c + ε− c = ε.

�
Now we may get the following

Corollary 1. If {pn}n∈N ⊂ B is a minimizing sequence for JD on B
and −∞ < inf

n∈N
JD(pn) < ∞, n ∈ N there exists sequence {xn}n∈N ⊂

W 1,2
0 (Ω, R) minimizing functional J on W 1,2

0 (Ω, R), such that ∀n ∈ N

∇xn(y) = pn(y)

a.e. y ∈ Ω.



14 Tomasz Grabski

4. Existence of solutions

To the end of the paper we consider the sequences {xk} i {pk} (xk ∈
C1

0 (Ω̄), pk ∈ C1(Ω̄), k ∈ N) such that {xk,div pk} ∈ W 1,2
0 (Ω, R) × D is

minimizing sequence for JC .
We assume that

(17) ‖xk‖L∞ ≤ C1‖∇xk‖L2 ,

for a certain C1 ≤ 1 (C1 = C1(Ω)) and for each k ∈ N , moreover

(18) vol Ω ≤ 1.

Theorem 6. There exist a pair (x̄,div p̄) minimizing JC on W 1,2
0 (Ω, R)×D,

i.e.

JC(x̄,div p̄) = inf
x∈W 1,2

0 (Ω,R),div p∈D
JC(x,div p).

Proof. Let {xk,div pk} ∈ W 1,2
0 (Ω, R)×D be a minimizing sequence to JC .

We show that sequence is bounded on W 1,2
0 (Ω, R)×D. From (1)

G(y, v) ≥ F ∗∗(y, v) + 1
2 |v|

2, y ∈ Ω, v ∈ R.

For each k ∈ N we have:

JC(xk,div pk) ≥

≥
∫
Ω

{
〈xk(y),div pk(y)〉+ F ∗∗(y,−div pk(y)) + 1

2 |div pk(y)|2 + 1
2 |∇xk(y)|2

}
dy

for any k ∈ N

JC(xk,div pk) ≥
∫
Ω

〈xk(y),div pk(y)〉dy +
∫
Ω

F ∗∗(y,−div pk(y))dy +

+ 1
2

(∫
Ω

|div pk(y)|2dy +
∫
Ω

|∇xk(y)|2dy

)
.

(19)

Now we consider the set

(20) Φb = {(x,div p) : JC(x,div p) ≤ b}

where b ∈ R is sufficiently large for Φb 6= ∅ (for example b > JC(x1,div p1)).
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Applying Holder inequality for the first integral on the right hand side of
(19) we have:

b ≥ JC(xk,div pk) ≥
≥ −‖xk‖L∞‖div pk‖L1 + 1

2

(
‖div pk‖2

L2 + ‖∇xk‖2
L2

)
+

+
∫
Ω

F ∗∗(y,−div pk(y))dy.
(21)

Using (17) the above inequality takes the form:

b ≥ 1
2

(
−2‖xk‖L∞‖div pk‖L1 + ‖div pk‖2

L2 + ‖xk‖2
L∞
)
+

+
∫
Ω

F ∗∗(y,−div pk(y))dy.

From [5] we have:

(22) ‖div pk‖L1 ≤
√

volΩ ‖div pk‖L2 .

Denoting V = 1/ volΩ, we have:

b ≥ 1
2

(
−2‖xk‖L∞‖div pk‖L1 + V ‖div pk‖2

L1 + ‖xk‖2
L∞
)
+

+
∫
Ω

F ∗∗(y,−div pk(y))dy.

Observe that f(x, y) = −2xy+V y2 +x2 is nonnegative provided x, y ≥ 0,
V ≥ 1 hence:

−2‖xk‖L∞‖div pk‖L1 + V ‖div pk‖2
L1 + ‖xk‖2

L∞ ≥ 0.

From (21) we get the following estimate which is uniform with respect to
k:

(23) b ≥ JC(xk,div pk) ≥
∫
Ω

F ∗∗(y,−div pk(y))dy.

By definition of the conjugate we have

F ∗∗(y, q) ≥ 〈v, q〉 − F ∗(y, v)

so
F ∗∗(y, q) ≥ sup

v∈[−r,r]
{〈v, q〉 − F ∗(y, v)}

where r > 0 is a certain constant.
By properties of the supremum:

F ∗∗(y, q) ≥ sup
v∈[−r,r]

〈v, q〉 − sup
v∈[−r,r]

F ∗(y, v) ≥ r|q| − sup
v∈[−r,r]

F ∗(y, v)
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by the above

(24)
∫
Ω

F ∗∗(y,−div pk(y))dy ≥ r

∫
Ω

|div pk(y)|dy −
∫
Ω

sup
v∈[−r,r]

F ∗(y, v)dy.

Let K =
∫
Ω

sup
v∈[−r,r]

F ∗(y, v)dy. By the assumption it follows that K is finite.

By inequalities (23),(24) we get:

(25) JC(xk,−div pk) ≥ r‖div pk(y)‖L1 −K.

By (25) we infer that the sequence is bounded {‖div pk(y)‖L1}k∈N i.e. there
exists a constant C:

‖div pk(y)‖L1 ≤ C

for any k ∈ N .
By (21) and (17) we have for any k ∈ N :

b ≥ JC(xk,div pk) ≥
≥ −‖∇xk‖L2‖div pk‖L1 + 1

2

(
‖div pk‖2

L2 + ‖∇xk‖2
L2

)
+

+
∫
Ω

F ∗∗(y,−div pk(y))dy.

By (22) we have for any k ∈ N :

b ≥ −‖∇xk‖L2‖div pk‖L1 + 1
2

(
V ‖div pk‖2

L1 + ‖∇xk‖2
L2

)
+

+
∫
Ω

{F ∗∗(y,−div pk(y))} dy.

Since the integral
∫
Ω

F ∗∗(y,−div pk(y))dy is bounded (uniformly in k ∈

N) and sequence {‖div pk(y)‖L1}k∈N is bounded, it follows that:

{‖∇xk‖L2}k∈N

by corollary (1) is bounded:

(26) {‖pk(y)‖L2}k∈N

by inequalty (17) it follows that:

(27) {‖xk‖L∞}k∈N .

Hence (21) we get the boundeness of the sequence:

(28) {‖div pk‖L2}k∈N .

By reflexivity of L2(Ω, Rn) and L2(Ω, R) and by (26) we may choose
a subsequence {pki

} from {pk} which is weakly convergent to a certain
p0 ∈ L2(Ω, Rn) and such that div pki

⇁ z, where z ∈ L2(Ω, R) (⇁ denotes
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the weak convergence in L2(Ω, R)). The resulting subsequence {pki
} we

denote by {pk}.
Now we show that div p0 exists and div p0 = z. Indeed by weak conver-

gence of {pk} to p0 we have for arbitrary h ∈ L2(Ω, Rk):

(29) lim
k→∞

∫
Ω

〈pk(y), h(y)〉dy =
∫
Ω

〈p0(y), h(y)〉dy.

Using the weak convergence of {div pk}k∈N to z in L2(Ω, R) we have for any
g ∈ L2(Ω, R):

(30) lim
k→∞

∫
Ω

〈div pk(y), g(y)〉dy =
∫
Ω

〈z(y), g(y)〉dy.

By (29) and (30) we obtain for any h ∈ C∞0 (Ω, R):∫
Ω

〈p0(y),∇h(y)〉dy = lim
k→∞

∫
Ω

〈pk(y),∇h(y)〉dy =

= − lim
k→∞

∫
Ω

〈div pk(y), h(y)〉dy = −
∫
Ω

〈z(y), h(y)〉dy.

Hence for all h ∈ C∞0 (Ω, R):∫
Ω

(〈p0(y),∇h(y)〉+ 〈z(y), h(y)〉)dy = 0.

Thus by Eulera-Lagrange lemma it follows that div p0(y) = z(y) for a.e.
y ∈ Ω.

In order to show that JC attains an infimium on L2(Ω, Rn)× L2(Ω, Rn)
it suffices to show that

(31) lim inf
k→∞

JC(xk,div pk) ≥ JC(x̄, div p̄).

By boundness of {‖∇xk(y)‖L2}k∈N and Poincare inequality it follows that
{xk}k∈N is also bounded in L2. By reflexivity of W 1,2(Ω, R) we have the
existence of a weak limit x̄. By Aubin’s lemma[2] it follows that {xk}k∈N is
strongly convergent on L2(Ω, Rn) to x̄ ∈ L2(Ω, R).

Since {xk}k∈N is strongly convergent on L2(Ω, R) and {div pk}k∈N is
weakly convergent on L2(Ω, R) it follows

(32) lim
k→∞

∫
Ω

{〈xk(y),div pk(y)〉} dy =
∫
Ω

{〈x̄(y),div p̄(y)〉} dy.
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Since G is convex and lower semicontinous it follows that L2(Ω, R) 3 div p 7→∫
Ω

G(y,−div p(y)dy is convex and lower semicontinous so it is weakly lower

semicontinous.Hence

(33) lim inf
k→∞

∫
Ω

{G(y,−div pk(y)} dy ≥
∫
Ω

{G(y,−div p̄(y)} dy.

Since L2(Ω, Rn) 3 ∇x 7→ 1
2

∫
Ω

|∇x(y)|2dy

(34) lim inf
k→∞

1
2

∫
Ω

|∇xk(y)|2dy ≥ 1
2

∫
Ω

|∇x(y)|2dy.

Hence by (32), (33), (34) we have

lim inf
k→∞

JC(xk,div pk) =

= lim inf
k→∞

∫
Ω

{
〈xk(y),div pk(y))〉+ G(y,−div pk(y)) + 1

2 |∇xk(y)|2
}

dy ≥

≥
∫
Ω

{
〈x̄(y),div p̄(y))〉+ G(y,−div p̄(y)) + 1

2 |∇x̄(y)|2
}

dy = JC(x̄,div p̄).

�
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