FoLiA MATHEMATICA Acta Universitatis Lodziensis
VoL. 14, No. 1, pp. 33-38 © 2007 for University of L6dz Press

DESCRIPTIVE CHARACTER OF SETS OF y-DENSITY
POINTS

MALGORZATA TEREPETA?

Abstract. Let X = [0,1] and A C X2 is a Borel set. In the paper the
following problem is discussed: consider the set Dy, (A) of all (z,y) € X2 such
that A; is measurable and y is ¢-density point of Ay. Is Dy (A) a Borel set?
Can we estimate the Borel class of this set if the Borel class of A is assumed?
Is this set analytic (coanalytic) while A is analytic (coanalytic)?

Let N be the sets of all natural numbers (including 0). Q, R, R} will
stand for the sets of all rational, real and positive real numbers. By L
we will mean the class of Lebesgue measurable sets in R* k = 1,2. The
Lebesgue measure on the real line and on the real plane will be denoted by
m and meg, respectively. Let C be the family of all nondecreasing, continuous
functions ¢: Ry — R4 such that lim ¢ = 0. Put X = [0, 1].

z—07F
We say that z is a i-density point of a measurable set A C R if

I m(A' N[z —h,x+ h])
B0t 2hp(2h)

where A’ denotes a complement of A. For any measurable set A C R, we
put

=0,

O, (A) = {z € R: z is a 1)-density point of A}.
From [4] we obtain that the set ®,(A) is F,s and the family 7, = {A €
L1: A C ®y(A)} is a topology stronger than the natural topology 7, and
weaker than the density topology 7;. For A C X2, € X and a function
1 € C we put

A, ={ye X: (z,y) € A}

and

Dy(A) = {(z,y) € X?: Ay € L1 Ay € Dy(A,)}.

In the analogous way we can define the set D(A) for the density topology.

The behaviour of operator D(-) with respect to classes of Borel, analytic and
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coanalytic subsets was studied in [1] and [2]. We are going to obtain similar
results for Dy (). From [5] it follows that the symmetric difference AAD(A)
is a set of plane measure zero for each A € L5. We do not obtain similar
result for the set of the form AAD,(A) due to the following theorem

Theorem 1 ([4, Theorem 0.2]). For any function ¢ € C and any o € (0,1)
there exists a perfect set P C [0,1] such that m(P) = o and ®(P) = 0.

Proposition 1. There exists a measurable set E C X? of positive plane
measure such that mo(EADy(E)) > 0.

Proof. Let a € (0,1) be an arbitrary real number and ¢ € C. Let P be
a perfect set from Theorem 1 such that m(P) = a > 0 and @, (P) = 0.
We put E = X x P. Hence ma(E) > 0 and Dy (E) = 0, since E, = P so
E,. € Ly for x € X and (I)w(P) =0. So TTQ(EAD#,(E)) > 0. O

The following example shows that even if A C X? is open, the set Dy (A)
does not need to be open.

Example 1. There exist an open set A C R? and a function v € C such
that Dy (A) is not open.

Let A =R x B, where

> l1 1 1
B_R\<U {W—W,W]u{o})

n=1
Obviously A is open in the natural topology on the plane. Let the function
1) be defined as follows:

1 1 1 1
o for @€ [ﬁ (Al 27] ;n € N\ {0},
Y(z) =
linear for =x € (271%, = — m) ,n € N\ {0}.
From [4, Theorem 0.1] it follows that 0 is a t-density point of the open set

B. Hence (x,0) € Dy(A) for any z € R, and (z,0) is not an interior point
of Dy(A), so this set is not open in the natural topology on the plane.

Proposition 2. Let A C X? and let A, be measurable for all x € X. Then
(1) pyH=U [ Tn)
neN keN he(()’k%_l)m(@

where
2hp(2h) }

T(n,h) = {(:U,y) eXZmA Ny—hy+h)< nrl
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Proof. The inclusion Dy (A) C (,en UrenMNre(o T T'(n,h) is obvious.
Y k+1
Indeed, let (z,y) € Dy(A). Hence A, is measurable and y is a 1)-density
point of A;. From the definition of v-density points we have
, J—
Lo AL [y~ by + B
h—0+ 2h(2h)
Therefore for any n € N there exists a number & € N such that for any
rational h € (0, k%_l) we have
2h1)(2h) “n+1
This by the definition of T'(n, h) ends the proof of this inclusion.
We will show the contrary inclusion. We consider the function
_m(A Ny —hy+h])

= 0.

h) =
9(h) 2h(2h)
for h > 0. It is continuous for h > 0. Hence from inequality
1
h) <
9(h) < n+1
fulfilled for h € (0, ﬁ)ﬁ(@ we have the same inequality for h € (0, k%rl) O

Following [3] (page 68) we introduce the Borel hierarchy of sets, consisting
of the open, closed, F,, Gy, etc., sets. Let Y be a metrizable space, so any
closed subset of Y is a G set. Let wy be the first uncountable ordinal. For
any 1 < a < wy we define the classes X0 and TI2, of subsets of Y as follows:

Y ={U CY:Uisopen }, I =~ %0

2 ={UA4p:4,€ , ay<a, neN} ifa>1

neN
Hence ¥ = F,, IIJ = G5, 29 = G5, 113 = F,s, etc.
In the next considerations we will assume that A C X?2.

Proposition 3 ([1]). If A€ XY, 0 < a < wy, then forr € R
{z e X:m(A,) >r}exl.
Remark 1. If A€ X0, 0 < a < wy, then forr € R
{reX:m(A) <r}exl.
Proof. Obviously m(AL) < r if and only if m(A4,) > m(X) —r, so
{re X:m(A) <r}={z e X:m(4;) >m(X)—r}
and the remark follows from Proposition 3. (Il

The following theorem estimates the Borel class of the set D, (A) when
the Borel class of the set A is assumed.



36 MALGORZATA TEREPETA

Theorem 2. If A € X0, then Dy(A) € 112 5

Proof. If A € ¥9 then A is a Borel set. Hence A, is also Borel for any
x € X, so it is measurable. From Proposition 2 we obtain that

=Ny N 7en.

nENkENheg 1 =7)NQ

where

T(n,h) = {(a},y) c X2 m(A, N[y —h,y+h]) < M@h)}

n+1
Let p € N. The function y — m(A, N[y — h,y + h]) is continuous so for

y € X there exists a rational number s such that |y — s| < m and
2hyp(2h) 1
Al —h h .
m(A, N [s—h,s+ h]) < T |
Hence
2hp(2h 1
T(n,h) = ﬂU re X :m(AL N[s—h,s+h]) < L )—i—
PEN 550 n+1 p+1

X

1
X:ly— —
{ye ly —s| < +1}>

Let us notice that
{reX:m(A N[s—h,s+h])<r}=
{reX:m(A;N[s—h,s+h])>2h—1}=
= {zeX:m(AN(X x [s—h,s+ h]))z) > 2h —r}.
From the above and Proposition 3 we obtain that
{reX:m(A,N[s—h,s+h]) <r}exl
Therefore T(n, h) belongs to the class I12 ;. Thus by (1) we obtain that
Dy(A) eI ,. O
In the next considerations we will answer the question: is Dy,(A) analytic
(coanalytic) if A is so?

Proposition 4 ([1, Prop. 2.1]). If A C X? is analytic, then for any h > 0
and r € R the set

{(z,y) € X>: m(A. N[y — h,y +h]) >}

s analytic.
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Remark 2. If A C X? is analytic, then for any h > 0 and r € R the set
{(z,y) € X2:m(AL N[y — hyy +h]) <1}
s analytic.
Proof. We have the following equalites
{(z,y) € X2 m(Ay Ny —hoy +h]) <r} =
= {(z,y) e X:m(A. N[y —h,y+h])>2h—71} =

- ﬂ{(x,y) e X?:m(A. N[y —h,y+h) >2h—7’—%}.
n=1

The class of analytic sets is closed under countable intersections (see [3,
Prop. 14.4]). This and Proposition 4 finishes the proof. O

Theorem 3. If A C X? is analytic (coanalytic), then D, (A) is analytic
(coanalytic).

Proof. Let us notice that if A is analytic (coanalytic), then A, is analytic
(coanalytic). So it is measurable ([3], Theorem 29.7) for any = € X.
Let us assume that A is analytic. From Proposition 2 we have

pyAH=NU [ Thh),

neN keN hG(O,%H)ﬂQ

where

7. = { (o) € X% i, 0y = oy + 1) < 20O
n+1
From Remark 2 the set T'(n, h) is analytic for arbitrary n € N and h > 0.
Therefore Dy (A) is analytic as countable union and countable product of
analytic sets (see [3, Prop.14.4]).
Let us assume now that A is coanalytic. Then X2\ A is analytic and A,
is measurable for any x € X, so from Proposition 2

DyA=U N Tmh,

neNEEN pe(0, 2-)NQ

Yk+1
where
2hyp(2h
flnt) = {(x’y) € X% m((X*\ A)s N[y — hyy + h]) < nﬁ(l)} .
Obviously

T(n, h) =X2\{<:c,y> € X% m((X*\ A)z Ny — h,y+h]) > 22‘”3?)}-
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The set X2\ A is analytic, so by Proposition 4 the set

2hi)(2h
{ e X% m(Ee\ a0y - o+ 1) > 2020
is also analytic. Consequently, the set T'(n, h) is coanalytic and so is Dy (A).

O
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