DESCRIPTIVE CHARACTER OF SETS OF ψ -DENSITY POINTS

MAŁGORZATA TEREPETA[‡]

Abstract. Let X = [0,1] and $A \subset X^2$ is a Borel set. In the paper the following problem is discussed: consider the set $D_{\psi}(A)$ of all $(x,y) \in X^2$ such that A_x is measurable and y is ψ -density point of A_x . Is $D_{\psi}(A)$ a Borel set? Can we estimate the Borel class of this set if the Borel class of A is assumed? Is this set analytic (coanalytic) while A is analytic (coanalytic)?

Let \mathbb{N} be the sets of all natural numbers (including 0). \mathbb{Q} , \mathbb{R} , \mathbb{R}_+ will stand for the sets of all rational, real and positive real numbers. By \mathcal{L}_k we will mean the class of Lebesgue measurable sets in \mathbb{R}^k , k=1,2. The Lebesgue measure on the real line and on the real plane will be denoted by m and m_2 , respectively. Let \mathcal{C} be the family of all nondecreasing, continuous functions $\psi \colon \mathbb{R}_+ \to \mathbb{R}_+$ such that $\lim_{x \to 0^+} \psi = 0$. Put X = [0,1].

We say that x is a ψ -density point of a measurable set $A \subset \mathbb{R}$ if

$$\lim_{h\to 0^+}\frac{m(A'\cap [x-h,x+h])}{2h\psi(2h)}=0,$$

where A' denotes a complement of A. For any measurable set $A \subset \mathbb{R}$, we put

$$\Phi_{\psi}(A) = \{x \in \mathbb{R} : x \text{ is a } \psi\text{-density point of } A\}.$$

From [4] we obtain that the set $\Phi_{\psi}(A)$ is $F_{\sigma\delta}$ and the family $\mathcal{T}_{\psi} = \{A \in \mathcal{L}_1 : A \subset \Phi_{\psi}(A)\}$ is a topology stronger than the natural topology \mathcal{T}_o and weaker than the density topology \mathcal{T}_d . For $A \subset X^2$, $x \in X$ and a function $\psi \in \mathcal{C}$ we put

$$A_x = \{ y \in X : (x, y) \in A \}$$

and

$$D_{\psi}(A) = \{(x, y) \in X^2 \colon A_x \in \mathcal{L}_1 \land y \in \Phi_{\psi}(A_x)\}.$$

In the analogous way we can define the set D(A) for the density topology. The behaviour of operator $D(\cdot)$ with respect to classes of Borel, analytic and

[‡]Lódź Technical University, Center of Mathematics and Physics, al. Politechniki 11, 90-924 Łódź, Poland. E-mail: ttrp@poczta.onet.pl.

Key words and phrases: analytic set, Borel set, density point, ψ - density point. AMS subject classifications: 04A15, 28A05, 54H05.

coanalytic subsets was studied in [1] and [2]. We are going to obtain similar results for $D_{\psi}(\cdot)$. From [5] it follows that the symmetric difference $A \triangle D(A)$ is a set of plane measure zero for each $A \in \mathcal{L}_2$. We do not obtain similar result for the set of the form $A \triangle D_{\psi}(A)$ due to the following theorem

Theorem 1 ([4, Theorem 0.2]). For any function $\psi \in \mathcal{C}$ and any $\alpha \in (0,1)$ there exists a perfect set $P \subset [0,1]$ such that $m(P) = \alpha$ and $\Phi_{\psi}(P) = \emptyset$.

Proposition 1. There exists a measurable set $E \subset X^2$ of positive plane measure such that $m_2(E \triangle D_{\psi}(E)) > 0$.

Proof. Let $\alpha \in (0,1)$ be an arbitrary real number and $\psi \in \mathcal{C}$. Let P be a perfect set from Theorem 1 such that $m(P) = \alpha > 0$ and $\Phi_{\psi}(P) = \emptyset$. We put $E = X \times P$. Hence $m_2(E) > 0$ and $D_{\psi}(E) = \emptyset$, since $E_x = P$ so $E_x \in \mathcal{L}_1$ for $x \in X$ and $\Phi_{\psi}(P) = \emptyset$. So $m_2(E \triangle D_{\psi}(E)) > 0$.

The following example shows that even if $A \subset X^2$ is open, the set $D_{\psi}(A)$ does not need to be open.

Example 1. There exist an open set $A \subset \mathbb{R}^2$ and a function $\psi \in \mathcal{C}$ such that $D_{\psi}(A)$ is not open.

Let $A = \mathbb{R} \times B$, where

$$B = \mathbb{R} \setminus \left(\bigcup_{n=1}^{\infty} \left[\frac{1}{2^n} - \frac{1}{2^n(n+2)!}, \frac{1}{2^n} \right] \cup \{0\} \right).$$

Obviously A is open in the natural topology on the plane. Let the function ψ be defined as follows:

$$\psi(x) = \begin{cases} \frac{1}{(n+2)!} & \text{for } x \in \left[\frac{1}{2^n} - \frac{1}{2^n(n+2)!}, \frac{1}{2^n}\right], n \in \mathbb{N} \setminus \{0\}, \\ \\ \text{linear } \text{for } x \in \left(\frac{1}{2^{n+1}}, \frac{1}{2^n} - \frac{1}{2^n(n+2)!}\right), n \in \mathbb{N} \setminus \{0\}. \end{cases}$$

From [4, Theorem 0.1] it follows that 0 is a ψ -density point of the open set B. Hence $(x,0) \in D_{\psi}(A)$ for any $x \in \mathbb{R}$, and (x,0) is not an interior point of $D_{\psi}(A)$, so this set is not open in the natural topology on the plane.

Proposition 2. Let $A \subset X^2$ and let A_x be measurable for all $x \in X$. Then

(1)
$$D_{\psi}(A) = \bigcap_{n \in \mathbb{N}} \bigcup_{k \in \mathbb{N}} \bigcap_{h \in (0, \frac{1}{k+1}) \cap \mathbb{Q}} T(n, h),$$

where

$$T(n,h) = \left\{ (x,y) \in X^2 \colon m(A'_x \cap [y-h,y+h]) \le \frac{2h\psi(2h)}{n+1} \right\}.$$

Proof. The inclusion $D_{\psi}(A) \subset \bigcap_{n \in \mathbb{N}} \bigcup_{k \in \mathbb{N}} \bigcap_{h \in (0, \frac{1}{k+1}) \cap \mathbb{Q}} T(n, h)$ is obvious. Indeed, let $(x, y) \in D_{\psi}(A)$. Hence A_x is measurable and y is a ψ -density point of A_x . From the definition of ψ -density points we have

$$\lim_{h \to 0^+} \frac{m(A'_x \cap [y - h, y + h])}{2h\psi(2h)} = 0.$$

Therefore for any $n \in \mathbb{N}$ there exists a number $k \in \mathbb{N}$ such that for any rational $h \in (0, \frac{1}{k+1})$ we have

$$\frac{m(A_x' \cap [y-h, y+h]}{2h\psi(2h)} \le \frac{1}{n+1}.$$

This by the definition of T(n,h) ends the proof of this inclusion. We will show the contrary inclusion. We consider the function

$$g(h) = \frac{m(A'_x \cap [y-h, y+h])}{2h\psi(2h)}$$

for h > 0. It is continuous for h > 0. Hence from inequality

$$g(h) \le \frac{1}{n+1}$$

fulfilled for $h \in (0, \frac{1}{k+1}) \cap \mathbb{Q}$ we have the same inequality for $h \in (0, \frac{1}{k+1})$. \square

Following [3] (page 68) we introduce the Borel hierarchy of sets, consisting of the open, closed, F_{σ} , G_{δ} , etc., sets. Let Y be a metrizable space, so any closed subset of Y is a G_{δ} set. Let ω_1 be the first uncountable ordinal. For any $1 \leq \alpha < \omega_1$ we define the classes Σ^0_{α} and Π^0_{α} of subsets of Y as follows:

closed subset of Y is a
$$G_{\delta}$$
 set. Let ω_1 be the first uncountable ordinal. For any $1 \leq \alpha < \omega_1$ we define the classes Σ_{α}^0 and Π_{α}^0 of subsets of Y as follows: $\Sigma_1^0 = \{U \subset Y : U \text{ is open }\}, \Pi_{\alpha}^0 = \sim \Sigma_{\alpha}^0,$ $\Sigma_{\alpha}^0 = \{\bigcup_{n \in \mathbb{N}} A_n : A_n \in \Pi_{\alpha_n}^0, \ \alpha_n < \alpha, \ n \in \mathbb{N}\}, \text{ if } \alpha > 1.$

Hence $\Sigma_2^0 = F_{\sigma}$, $\Pi_2^0 = G_{\delta}$, $\Sigma_3^0 = G_{\delta\sigma}$, $\Pi_3^0 = F_{\sigma\delta}$, etc. In the next considerations we will assume that $A \subset X^2$.

Proposition 3 ([1]). If $A \in \Sigma_{\alpha}^{0}$, $0 < \alpha < \omega_{1}$, then for $r \in \mathbb{R}$

$$\{x \in X : m(A_x) > r\} \in \Sigma^0_\alpha.$$

Remark 1. If $A \in \Sigma^0_{\alpha}$, $0 < \alpha < \omega_1$, then for $r \in \mathbb{R}$

$$\{x \in X \colon m(A_x') < r\} \in \Sigma_{\alpha}^0.$$

Proof. Obviously $m(A'_x) < r$ if and only if $m(A_x) > m(X) - r$, so

$${x \in X : m(A'_x) < r} = {x \in X : m(A_x) > m(X) - r}$$

and the remark follows from Proposition 3.

The following theorem estimates the Borel class of the set $D_{\psi}(A)$ when the Borel class of the set A is assumed.

Theorem 2. If $A \in \Sigma^0_{\alpha}$, then $D_{\psi}(A) \in \Pi^0_{\alpha+3}$.

Proof. If $A \in \Sigma^0_{\alpha}$ then A is a Borel set. Hence A_x is also Borel for any $x \in X$, so it is measurable. From Proposition 2 we obtain that

$$D_{\psi}(A) = \bigcap_{n \in \mathbb{N}} \bigcup_{k \in \mathbb{N}} \bigcap_{h \in (0, \frac{1}{k+1}) \cap \mathbb{Q}} T(n, h),$$

where

$$T(n,h) = \left\{ (x,y) \in X^2 \colon m(A_x' \cap [y-h,y+h]) \le \frac{2h\psi(2h)}{n+1} \right\}.$$

Let $p \in \mathbb{N}$. The function $y \mapsto m(A'_x \cap [y-h,y+h])$ is continuous, so for $y \in X$ there exists a rational number s such that $|y-s| < \frac{1}{p+1}$ and

$$m(A'_x \cap [s-h, s+h]) < \frac{2h\psi(2h)}{n+1} + \frac{1}{p+1}.$$

Hence

$$T(n,h) = \bigcap_{p \in \mathbb{N}} \bigcup_{s \in \mathbb{Q}} \left(\left\{ x \in X : m(A'_x \cap [s-h,s+h]) < \frac{2h\psi(2h)}{n+1} + \frac{1}{p+1} \right\} \right)$$

$$\times \left\{ y \in X : |y-s| < \frac{1}{p+1} \right\}.$$

Let us notice that

$$\{x \in X : m(A'_x \cap [s-h, s+h]) < r\} =$$

$$= \{x \in X : m(A_x \cap [s-h, s+h]) > 2h-r\} =$$

$$= \{x \in X : m((A \cap (X \times [s-h, s+h]))_x) > 2h-r\}.$$

From the above and Proposition 3 we obtain that

$$\{x \in X \colon m(A'_x \cap [s-h, s+h]) < r\} \in \Sigma^0_\alpha.$$

Therefore T(n,h) belongs to the class $\Pi^0_{\alpha+1}$. Thus by (1) we obtain that $D_{\psi}(A) \in \Pi^0_{\alpha+3}$.

In the next considerations we will answer the question: is $D_{\psi}(A)$ analytic (coanalytic) if A is so?

Proposition 4 ([1, Prop. 2.1]). If $A \subset X^2$ is analytic, then for any h > 0 and $r \in \mathbb{R}$ the set

$$\{(x,y) \in X^2 : m(A_x \cap [y-h,y+h]) > r\}$$

is analytic.

Remark 2. If $A \subset X^2$ is analytic, then for any h > 0 and $r \in \mathbb{R}$ the set

$$\{(x,y) \in X^2 : m(A'_x \cap [y-h, y+h]) \le r\}$$

is analytic.

Proof. We have the following equalites

$$\{(x,y) \in X^2 : m(A'_x \cap [y-h,y+h]) \le r\} =$$

$$= \{(x,y) \in X^2 : m(A_x \cap [y-h,y+h]) \ge 2h-r\} =$$

$$= \bigcap_{n=1}^{\infty} \{(x,y) \in X^2 : m(A_x \cap [y-h,y+h]) > 2h-r-\frac{1}{n}\}.$$

The class of analytic sets is closed under countable intersections (see [3, Prop. 14.4]). This and Proposition 4 finishes the proof.

Theorem 3. If $A \subset X^2$ is analytic (coanalytic), then $D_{\psi}(A)$ is analytic (coanalytic).

Proof. Let us notice that if A is analytic (coanalytic), then A_x is analytic (coanalytic). So it is measurable ([3], Theorem 29.7) for any $x \in X$.

Let us assume that A is analytic. From Proposition 2 we have

$$D_{\psi}(A) = \bigcap_{n \in \mathbb{N}} \bigcup_{k \in \mathbb{N}} \bigcap_{h \in (0, \frac{1}{k+1}) \cap \mathbb{Q}} T(n, h),$$

where

$$T(n,h) = \left\{ (x,y) \in X^2 \colon m(A'_x \cap [y-h,y+h]) \le \frac{2h\psi(2h)}{n+1} \right\}.$$

From Remark 2 the set T(n,h) is analytic for arbitrary $n \in \mathbb{N}$ and h > 0. Therefore $D_{\psi}(A)$ is analytic as countable union and countable product of analytic sets (see [3, Prop.14.4]).

Let us assume now that A is coanalytic. Then $X^2 \setminus A$ is analytic and A_x is measurable for any $x \in X$, so from Proposition 2

$$D_{\psi}(A) = \bigcap_{n \in \mathbb{N}} \bigcup_{k \in \mathbb{N}} \bigcap_{h \in (0, \frac{1}{k+1}) \cap \mathbb{Q}} T(n, h),$$

where

$$T(n,h) = \left\{ (x,y) \in X^2 : m((X^2 \setminus A)_x \cap [y-h,y+h]) \le \frac{2h\psi(2h)}{n+1} \right\}.$$

Obviously

$$T(n,h) = X^2 \setminus \left\{ (x,y) \in X^2 \colon m((X^2 \setminus A)_x \cap [y-h,y+h]) > \frac{2h\psi(2h)}{n+1} \right\}.$$

The set $X^2 \setminus A$ is analytic, so by Proposition 4 the set

$$\left\{ (x,y) \in X^2 : m((X^2 \setminus A)_x \cap [y-h,y+h]) > \frac{2h\psi(2h)}{n+1} \right\}$$

is also analytic. Consequently, the set T(n,h) is coanalytic and so is $D_{\psi}(A)$.

References

- M. Balcerzak, J. Peredko, Descriptive character of sets of density and I-density points, Real Anal. Exchange 23, 1 (1997/8), pp. 131–140.
- [2] M. Balcerzak, J. Peredko, Descriptive character of sets of density and *I*-density points. A correction, Real Anal. Exchange 25, 1 (1999/2000), pp. 493–496.
- [3] A. S. Kechris, Classical Descriptive Set Theory, Springer, New York 1995.
- [4] M. Terepeta, E. Wagner-Bojakowska, $\psi\text{-}density\ topology,$ Rend. Circ. Mat. Palermo, 48 (1999), pp. 451–476.
- [5] S. Saks, Theory of the Integral, G. E. Stechert, New York 1937.